Li Zheng


2025

pdf bib
Enhancing Hyperbole and Metaphor Detection with Their Bidirectional Dynamic Interaction and Emotion Knowledge
Li Zheng | Sihang Wang | Hao Fei | Zuquan Peng | Fei Li | Jianming Fu | Chong Teng | Donghong Ji
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-based hyperbole and metaphor detection are of great significance for natural language processing (NLP) tasks. However, due to their semantic obscurity and expressive diversity, it is rather challenging to identify them. Existing methods mostly focus on superficial text features, ignoring the associations of hyperbole and metaphor as well as the effect of implicit emotion on perceiving these rhetorical devices. To implement these hypotheses, we propose an emotion-guided hyperbole and metaphor detection framework based on bidirectional dynamic interaction (EmoBi). Firstly, the emotion analysis module deeply mines the emotion connotations behind hyperbole and metaphor. Next, the emotion-based domain mapping module identifies the target and source domains to gain a deeper understanding of the implicit meanings of hyperbole and metaphor. Finally, the bidirectional dynamic interaction module enables the mutual promotion between hyperbole and metaphor. Meanwhile, a verification mechanism is designed to ensure detection accuracy and reliability. Experiments show that EmoBi outperforms all baseline methods on four datasets. Specifically, compared to the current SoTA, the F1 score increased by 28.1% for hyperbole detection on the TroFi dataset and 23.1% for metaphor detection on the HYPO-L dataset. These results, underpinned by in-depth analyses, underscore the effectiveness and potential of our approach for advancing hyperbole and metaphor detection.

pdf bib
Zero-Shot Conversational Stance Detection: Dataset and Approaches
Yuzhe Ding | Kang He | Bobo Li | Li Zheng | Haijun He | Fei Li | Chong Teng | Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2025

Stance detection, which aims to identify public opinion towards specific targets using social media data, is an important yet challenging task. With the increasing number of online debates among social media users, conversational stance detection has become a crucial research area. However, existing conversational stance detection datasets are restricted to a limited set of specific targets, which constrains the effectiveness of stance detection models when encountering a large number of unseen targets in real-world applications. To bridge this gap, we manually curate a large-scale, high-quality zero-shot conversational stance detection dataset, named ZS-CSD, comprising 280 targets across two distinct target types. Leveraging the ZS-CSD dataset, we propose SITPCL, a speaker interaction and target-aware prototypical contrastive learning model, and establish the benchmark performance in the zero-shot setting. Experimental results demonstrate that our proposed SITPCL model achieves state-of-the-art performance in zero-shot conversational stance detection. Notably, the SITPCL model attains only an F1-macro score of 43.81%, highlighting the persistent challenges in zero-shot conversational stance detection.

2024

pdf bib
What Factors Influence LLMs’ Judgments? A Case Study on Question Answering
Lei Chen | Bobo Li | Li Zheng | Haining Wang | Zixiang Meng | Runfeng Shi | Hao Fei | Jun Zhou | Fei Li | Chong Teng | Donghong Ji
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) are now being considered as judges of high efficiency to evaluate the quality of answers generated by candidate models. However, their judgments may be influenced by complex scenarios and inherent biases, raising concerns about their reliability. This study aims to bridge this gap by introducing four unexplored factors and examining the performance of LLMs as judges, namely answer quantity, inducing statements, judging strategy, and judging style. Additionally, we introduce a new dimension of question difficulty to provide a more comprehensive understanding of LLMs’ judgments across varying question intricacies. We employ ChatGPT, GPT-4, Gemini, and Claude-2 as judges and conduct experiments on Vicuna Benchmark and MT-bench. Our study reveals that LLMs’ judging abilities are susceptible to the influence of these four factors, and analyzing from the newly proposed dimension of question difficulty is highly necessary. We also provide valuable insights into optimizing LLMs’ performance as judges, enhancing their reliability and adaptability across diverse evaluation scenarios.