Li Xiong


2025

pdf bib
Tokens for Learning, Tokens for Unlearning: Mitigating Membership Inference Attacks in Large Language Models via Dual-Purpose Training
Toan Tran | Ruixuan Liu | Li Xiong
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have become the backbone of modern natural language processing but pose privacy concerns about leaking sensitive training data. Membership inference attacks (MIAs), which aim to infer whether a sample is included in a model’s training dataset, can serve as a foundation for broader privacy threats. Existing defenses designed for traditional classification models do not account for the sequential nature of text data. As a result, they either require significant computational resources or fail to effectively mitigate privacy risks in LLMs. In this work, we propose DuoLearn, a lightweight yet effective empirical privacy defense for protecting training data of language models by leveraging token-specific characteristics. By analyzing token dynamics during training, we propose a token selection strategy that categorizes tokens into hard tokens for learning and memorized tokens for unlearning. Subsequently, our training-phase defense optimizes a novel dual-purpose token-level loss to achieve a Pareto-optimal balance between utility and privacy. Extensive experiments demonstrate that our approach not only provides strong protection against MIAs but also improves language modeling performance by around 10% across various LLM architectures and datasets compared to the baselines.

2022

pdf bib
Multi-View Active Learning for Short Text Classification in User-Generated Data
Payam Karisani | Negin Karisani | Li Xiong
Findings of the Association for Computational Linguistics: EMNLP 2022

Mining user-generated data often suffers from the lack of enough labeled data, short document lengths, and the informal user language. In this paper, we propose a novel active learning model to overcome these obstacles in the tasks tailored for query phrases–e.g., detecting positive reports of natural disasters. Our model has three novelties: 1) It is the first approach to employ multi-view active learning in this domain. 2) It uses the Parzen-Rosenblatt window method to integrate the representativeness measure into multi-view active learning. 3) It employs a query-by-committee strategy, based on the agreement between predictors, to address the usually noisy language of the documents in this domain. We evaluate our model in four publicly available Twitter datasets with distinctly different applications. We also compare our model with a wide range of baselines including those with multiple classifiers. The experiments testify that our model is highly consistent and outperforms existing models.

2021

pdf bib
Certified Robustness to Word Substitution Attack with Differential Privacy
Wenjie Wang | Pengfei Tang | Jian Lou | Li Xiong
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The robustness and security of natural language processing (NLP) models are significantly important in real-world applications. In the context of text classification tasks, adversarial examples can be designed by substituting words with synonyms under certain semantic and syntactic constraints, such that a well-trained model will give a wrong prediction. Therefore, it is crucial to develop techniques to provide a rigorous and provable robustness guarantee against such attacks. In this paper, we propose WordDP to achieve certified robustness against word substitution at- tacks in text classification via differential privacy (DP). We establish the connection between DP and adversarial robustness for the first time in the text domain and propose a conceptual exponential mechanism-based algorithm to formally achieve the robustness. We further present a practical simulated exponential mechanism that has efficient inference with certified robustness. We not only provide a rigorous analytic derivation of the certified condition but also experimentally compare the utility of WordDP with existing defense algorithms. The results show that WordDP achieves higher accuracy and more than 30X efficiency improvement over the state-of-the-art certified robustness mechanism in typical text classification tasks.

pdf bib
View Distillation with Unlabeled Data for Extracting Adverse Drug Effects from User-Generated Data
Payam Karisani | Jinho D. Choi | Li Xiong
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

We present an algorithm based on multi-layer transformers for identifying Adverse Drug Reactions (ADR) in social media data. Our model relies on the properties of the problem and the characteristics of contextual word embeddings to extract two views from documents. Then a classifier is trained on each view to label a set of unlabeled documents to be used as an initializer for a new classifier in the other view. Finally, the initialized classifier in each view is further trained using the initial training examples. We evaluated our model in the largest publicly available ADR dataset. The experiments testify that our model significantly outperforms the transformer-based models pretrained on domain-specific data.

2020

pdf bib
Utilizing Multimodal Feature Consistency to Detect Adversarial Examples on Clinical Summaries
Wenjie Wang | Youngja Park | Taesung Lee | Ian Molloy | Pengfei Tang | Li Xiong
Proceedings of the 3rd Clinical Natural Language Processing Workshop

Recent studies have shown that adversarial examples can be generated by applying small perturbations to the inputs such that the well- trained deep learning models will misclassify. With the increasing number of safety and security-sensitive applications of deep learn- ing models, the robustness of deep learning models has become a crucial topic. The robustness of deep learning models for health- care applications is especially critical because the unique characteristics and the high financial interests of the medical domain make it more sensitive to adversarial attacks. Among the modalities of medical data, the clinical summaries have higher risks to be attacked because they are generated by third-party companies. As few works studied adversarial threats on clinical summaries, in this work we first apply adversarial attack to clinical summaries of electronic health records (EHR) to show the text-based deep learning systems are vulnerable to adversarial examples. Secondly, benefiting from the multi-modality of the EHR dataset, we propose a novel defense method, MATCH (Multimodal feATure Consistency cHeck), which leverages the consistency between multiple modalities in the data to defend against adversarial examples on a single modality. Our experiments demonstrate the effectiveness of MATCH on a hospital readmission prediction task comparing with baseline methods.