Lester James Validad Miranda

Also published as: Lester James Miranda


2025

pdf bib
M-RewardBench: Evaluating Reward Models in Multilingual Settings
Srishti Gureja | Lester James Validad Miranda | Shayekh Bin Islam | Rishabh Maheshwary | Drishti Sharma | Gusti Triandi Winata | Nathan Lambert | Sebastian Ruder | Sara Hooker | Marzieh Fadaee
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs’ performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.

pdf bib
Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback
Lester James Validad Miranda | Yizhong Wang | Yanai Elazar | Sachin Kumar | Valentina Pyatkin | Faeze Brahman | Noah A. Smith | Hannaneh Hajishirzi | Pradeep Dasigi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Learning from human feedback has enabled the alignment of language models (LMs) with human preferences. However, collecting human preferences is expensive and time-consuming, with highly variable annotation quality. An appealing alternative is to distill preferences from LMs as a source of synthetic annotations, offering a cost-effective and scalable alternative, albeit susceptible to other biases and errors. In this work, we introduce HyPER, a Hybrid Preference routER that defers an annotation to either humans or LMs, achieving better annotation quality while reducing the cost of human-only annotation. We formulate this as an optimization problem: given a preference dataset and an evaluation metric, we (1) train a performance prediction model (PPM) to predict a reward model’s (RM) performance on an arbitrary combination of human and LM annotations and (2) employ a routing strategy that selects a combination that maximizes predicted performance. We train the PPM on MultiPref, a new preference dataset with 10K instances paired with human and LM labels. We show that the selected hybrid mixture of synthetic and direct human preferences using HyPER achieves better RM performance compared to using either one exclusively by 7-13% on RewardBench and generalizes across unseen preference datasets and other base models. We also observe the same trend in other benchmarks using Best-of-N reranking, where the hybrid mix has 2-3% better performance. Finally, we analyze features from HyPER and find that prompts with moderate safety concerns or complexity benefit the most from human feedback.

pdf bib
The UD-NewsCrawl Treebank: Reflections and Challenges from a Large-scale Tagalog Syntactic Annotation Project
Angelina Aspra Aquino | Lester James Validad Miranda | Elsie Marie T. Or
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper presents UD-NewsCrawl, the largest Tagalog treebank to date, containing 15.6k trees manually annotated according tothe Universal Dependencies framework. We detail our treebank development process, including data collection, pre-processing, manual annotation, and quality assurance procedures. We provide baseline evaluations using multiple transformer-based models to assess the performance of state-of-the-art dependency parsers on Tagalog. We also highlight challenges in the syntactic analysis of Tagalog given its distinctive grammatical properties, and discuss its implications for the annotation of this treebank. We anticipate that UD-NewsCrawl and our baseline model implementations will serve as valuable resources for advancing computational linguistics research in underrepresented languages like Tagalog.

pdf bib
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Samuel Cahyawijaya | Holy Lovenia | Joel Ruben Antony Moniz | Tack Hwa Wong | Mohammad Rifqi Farhansyah | Thant Thiri Maung | Frederikus Hudi | David Anugraha | Muhammad Ravi Shulthan Habibi | Muhammad Reza Qorib | Amit Agarwal | Joseph Marvin Imperial | Hitesh Laxmichand Patel | Vicky Feliren | Bahrul Ilmi Nasution | Manuel Antonio Rufino | Genta Indra Winata | Rian Adam Rajagede | Carlos Rafael Catalan | Mohamed Fazli Mohamed Imam | Priyaranjan Pattnayak | Salsabila Zahirah Pranida | Kevin Pratama | Yeshil Bangera | Adisai Na-Thalang | Patricia Nicole Monderin | Yueqi Song | Christian Simon | Lynnette Hui Xian Ng | Richardy Lobo Sapan | Taki Hasan Rafi | Bin Wang | Supryadi | Kanyakorn Veerakanjana | Piyalitt Ittichaiwong | Matthew Theodore Roque | Karissa Vincentio | Takdanai Kreangphet | Phakphum Artkaew | Kadek Hendrawan Palgunadi | Yanzhi Yu | Rochana Prih Hastuti | William Nixon | Mithil Bangera | Adrian Xuan Wei Lim | Aye Hninn Khine | Hanif Muhammad Zhafran | Teddy Ferdinan | Audra Aurora Izzani | Ayushman Singh | Evan Evan | Jauza Akbar Krito | Michael Anugraha | Fenal Ashokbhai Ilasariya | Haochen Li | John Amadeo Daniswara | Filbert Aurelian Tjiaranata | Eryawan Presma Yulianrifat | Can Udomcharoenchaikit | Fadil Risdian Ansori | Mahardika Krisna Ihsani | Giang Nguyen | Anab Maulana Barik | Dan John Velasco | Rifo Ahmad Genadi | Saptarshi Saha | Chengwei Wei | Isaiah Edri W. Flores | Kenneth Chen Ko Han | Anjela Gail D. Santos | Wan Shen Lim | Kaung Si Phyo | Tim Santos | Meisyarah Dwiastuti | Jiayun Luo | Jan Christian Blaise Cruz | Ming Shan Hee | Ikhlasul Akmal Hanif | M.Alif Al Hakim | Muhammad Rizky Sya’ban | Kun Kerdthaisong | Lester James Validad Miranda | Fajri Koto | Tirana Noor Fatyanosa | Alham Fikri Aji | Jostin Jerico Rosal | Jun Kevin | Robert Wijaya | Onno P. Kampman | Ruochen Zhang | Börje F. Karlsson | Peerat Limkonchotiwat
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite Southeast Asia’s (SEA) extraordinary linguistic and cultural diversity, the region remains significantly underrepresented in vision-language (VL) research, resulting in AI models that inadequately capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing culturally relevant high-quality datasets for SEA languages. By involving contributors from SEA countries, SEA-VL ensures better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages and cultural depictions in VL research. Our methodology employed three approaches: community-driven crowdsourcing with SEA contributors, automated image crawling, and synthetic image generation. We evaluated each method’s effectiveness in capturing cultural relevance. We found that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing, whereas synthetic image generation failed to accurately reflect SEA cultural nuances and contexts. Collectively, we gathered 1.28 million SEA culturally relevant images, more than 50 times larger than other existing datasets. This work bridges the representation gap in SEA, establishes a foundation for developing culturally aware AI systems for this region, and provides a replicable framework for addressing representation gaps in other underrepresented regions.
Search
Co-authors
Venues
Fix author