This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Recently, language models (LMs) have produced excellent results in many natural language processing (NLP) tasks. However, their effectiveness is highly dependent on available pre-training resources, which is particularly challenging for low-resource languages such as Sinhala. Furthermore, the scarcity of benchmarks to evaluate LMs is also a major concern for low-resource languages. In this paper, we address these two challenges for Sinhala by (i) collecting the largest monolingual corpus for Sinhala, (ii) training multiple LMs on this corpus and (iii) compiling the first Sinhala NLP benchmark (Sinhala-GLUE) and evaluating LMs on it. We show the Sinhala LMs trained in this paper outperform the popular multilingual LMs, such as XLM-R and existing Sinhala LMs in downstream NLP tasks. All the trained LMs are publicly available. We also make Sinhala-GLUE publicly available as a public leaderboard, and we hope that it will enable further advancements in developing and evaluating LMs for Sinhala.
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised to strengthen the research in false information detection where the participants are asked to predict seven different binary labels regarding false information in a tweet. The shared task has been organised in three languages; Arabic, Bulgarian and English. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves a 0.707 mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1 score in English ranking 4th place in all the languages.
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervised machine learning models have been used to automatically identify false information in social media. However, most of these machine learning models focus only on the language they were trained on. Given the fact that social media platforms are being used in different languages, managing machine learning models for each and every language separately would be chaotic. In this research, we experiment with multilingual models to identify false information in social media by using two recently released multilingual false information detection datasets. We show that multilingual models perform on par with the monolingual models and sometimes even better than the monolingual models to detect false information in social media making them more useful in real-world scenarios.