This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval-augmented generation (RAG) improves the service quality of large language models by retrieving relevant documents from credible literature and integrating them into the context of the user query.Recently, the rise of the cloud RAG service has made it possible for users to query relevant documents conveniently.However, directly sending queries to the cloud brings potential privacy leakage.In this paper, we are the first to formally define the privacy-preserving cloud RAG service to protect the user query and propose RemoteRAG as a solution regarding privacy, efficiency, and accuracy.For privacy, we introduce (n,𝜖)-DistanceDP to characterize privacy leakage of the user query and the leakage inferred from relevant documents.For efficiency, we limit the search range from the total documents to a small number of selected documents related to a perturbed embedding generated from (n,𝜖)-DistanceDP, so that computation and communication costs required for privacy protection significantly decrease.For accuracy, we ensure that the small range includes target documents related to the user query with detailed theoretical analysis.Experimental results also demonstrate that RemoteRAG can resist existing embedding inversion attack methods while achieving no loss in retrieval under various settings.Moreover, RemoteRAG is efficient, incurring only 0.67 seconds and 46.66KB of data transmission (2.72 hours and 1.43 GB with the non-optimized privacy-preserving scheme) when retrieving from a total of 105 documents.
Autoformalization is the task of automatically translating mathematical content written in natural language to a formal language expression. The growing language interpretation capabilities of Large Language Models (LLMs), including in formal languages, are lowering the barriers for autoformalization. However, LLMs alone are not capable of consistently and reliably delivering autoformalization, in particular as the complexity and specialization of the target domain grows. As the field evolves into the direction of systematically applying autoformalization towards large mathematical libraries, the need to improve syntactic, terminological and semantic control increases. This paper proposes the coordinated use of three mechanisms, most-similar retrieval augmented generation (MS-RAG), denoising steps, and auto-correction with syntax error feedback (Auto-SEF) to improve autoformalization quality. The empirical analysis, across different models, demonstrates that these mechanisms can deliver autoformalizaton results which are syntactically, terminologically and semantically more consistent. These mechanisms can be applied across different LLMs and have shown to deliver improve results across different model types.
This paper investigates the possibility of approximating multiple mathematical operations in latent space for expression derivation. To this end, we introduce different multi-operational representation paradigms, modelling mathematical operations as explicit geometric transformations. By leveraging a symbolic engine, we construct a large-scale dataset comprising 1.7M derivation steps stemming from 61K premises and 6 operators, analysing the properties of each paradigm when instantiated with state-of-the-art neural encoders.Specifically, we investigate how different encoding mechanisms can approximate expression manipulation in latent space, exploring the trade-off between learning different operators and specialising within single operations, as well as the ability to support multi-step derivations and out-of-distribution generalisation. Our empirical analysis reveals that the multi-operational paradigm is crucial for disentangling different operators, while discriminating the conclusions for a single operation is achievable in the original expression encoder. Moreover, we show that architectural choices can heavily affect the training dynamics, structural organisation, and generalisation of the latent space, resulting in significant variations across paradigms and classes of encoders.
Injecting desired geometric properties into text representations has attracted a lot of attention. A property that has been argued for, due to its better utilisation of representation space, is isotropy. In parallel, VAEs have been successful in areas of NLP, but are known for their sub-optimal utilisation of the representation space. To address an aspect of this, we investigate the impact of injecting isotropy during training of VAEs. We achieve this by using an isotropic Gaussian posterior (IGP) instead of the ellipsoidal Gaussian posterior. We illustrate that IGP effectively encourages isotropy in the representations, inducing a more discriminative latent space. Compared to vanilla VAE, this translates into a much better classification performance, robustness to input perturbation, and generative behavior. Additionally, we offer insights about the representational properties encouraged by IGP.
To highlight the challenges of achieving representation disentanglement for text domain in an unsupervised setting, in this paper we select a representative set of successfully applied models from the image domain. We evaluate these models on 6 disentanglement metrics, as well as on downstream classification tasks and homotopy. To facilitate the evaluation, we propose two synthetic datasets with known generative factors. Our experiments highlight the existing gap in the text domain and illustrate that certain elements such as representation sparsity (as an inductive bias), or representation coupling with the decoder could impact disentanglement. To the best of our knowledge, our work is the first attempt on the intersection of unsupervised representation disentanglement and text, and provides the experimental framework and datasets for examining future developments in this direction.