2025
pdf
bib
abs
Search-in-Context: Efficient Multi-Hop QA over Long Contexts via Monte Carlo Tree Search with Dynamic KV Retrieval
Jiabei Chen
|
Guang Liu
|
Shizhu He
|
Kun Luo
|
Yao Xu
|
Jun Zhao
|
Kang Liu
Findings of the Association for Computational Linguistics: ACL 2025
Recent advancements in large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, such as math problem-solving and code generation. However, multi-hop question answering (MHQA) over long contexts, which demands both robust knowledge-intensive reasoning and efficient processing of lengthy documents, remains a significant challenge. Existing approaches often struggle to balance these requirements, either neglecting explicit reasoning or incurring expensive computational costs due to full-attention mechanisms over long contexts. To address this, we propose **Search-in-Context (SIC)**, a novel framework that integrates Monte Carlo Tree Search (MCTS) with dynamic key-value (KV) retrieval to enable iterative, context-aware reasoning. SIC dynamically retrieves critical KV pairs (e.g., 4K tokens) at each step, prioritizing relevant evidence while mitigating the “lost in the middle” problem. Furthermore, the paper introduces a Process-Reward Model (PRM) trained on auto-labeled data to guide the MCTS process with stepwise rewards, promoting high-quality reasoning trajectories without manual annotation. Experiments on three long-context MHQA benchmarks (HotpotQA, 2WikiMultihopQA, MuSiQue) and a counterfactual multi-hop dataset demonstrate SIC’s superiority, achieving state-of-the-art performance while significantly reducing computational overhead.
2024
pdf
bib
abs
Landmark Embedding: A Chunking-Free Embedding Method For Retrieval Augmented Long-Context Large Language Models
Kun Luo
|
Zheng Liu
|
Shitao Xiao
|
Tong Zhou
|
Yubo Chen
|
Jun Zhao
|
Kang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval augmentation is a promising approach to handle long-context language modeling. However, the existing retrieval methods usually work with the chunked context, which is prone to inferior quality of semantic representation and incomplete retrieval of useful information. In this work, we propose a new method for the retrieval augmentation of long-context language modeling, called Landmark Embedding. Our method is characterized by threefold technical contributions. Firstly, we introduce a chunking-free architecture, which keeps the long context coherent such that high-quality embeddings can be generated for the fine-grained units within the context. Secondly, we present a position-aware objective function, which prioritizes the ultimate boundary for a consecutive span of information. By learning to discriminate such a special position, the useful information can be comprehensively retrieved for the query. Thirdly, we design a novel multi-stage learning algorithm, which makes the best use of readily available data and synthetic data for cost-effective training of the landmark embedding. In our experimental study, landmark embedding is able to substantially improve the performance for both LLaMA-2 and ChatGPT in a variety of long-context tasks; meanwhile, it also outperforms the existing retrieval methods with a notable advantage. Our model and source code will be made publicly available.
pdf
bib
abs
Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
Kun Luo
|
Minghao Qin
|
Zheng Liu
|
Shitao Xiao
|
Jun Zhao
|
Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Pre-trained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in-domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving state-of-the-art performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations—such as parameter sizes, pre-training duration, and alignment processes—on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in-domain accuracy, data efficiency, zero-shot generalization, lengthy retrieval, instruction-based retrieval, and multi-task learning. We evaluate over 15 different backbone LLMs and non-LLMs. Our findings reveal that larger models and extensive pre-training consistently enhance in-domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero-shot generalization, lengthy retrieval, instruction-based retrieval, and multi-task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
pdf
bib
abs
On the In-context Generation of Language Models
Zhongtao Jiang
|
Yuanzhe Zhang
|
Kun Luo
|
Xiaowei Yuan
|
Jun Zhao
|
Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) are found to have the ability of in-context generation (ICG): when they are fed with an in-context prompt concatenating a few somehow similar examples, they can implicitly recognize the pattern of them and then complete the prompt in the same pattern. ICG is curious, since language models are usually not explicitly trained in the same way as the in-context prompt, and the distribution of examples in the prompt differs from that of sequences in the pretrained corpora. This paper provides a systematic study of the ICG ability of language models, covering discussions about its source and influential factors, in the view of both theory and empirical experiments. Concretely, we first propose a plausible latent variable model to model the distribution of the pretrained corpora, and then formalize ICG as a problem of next topic prediction. With this framework, we can prove that the repetition nature of a few topics ensures the ICG ability on them theoretically. Then, we use this controllable pretrained distribution to generate several medium-scale synthetic datasets (token scale: 2.1B-3.9B) and experiment with different settings of Transformer architectures (parameter scale: 4M-234M). Our experimental results further offer insights into how the data and model architectures influence ICG.
pdf
bib
abs
KMatrix: A Flexible Heterogeneous Knowledge Enhancement Toolkit for Large Language Model
Shun Wu
|
Di Wu
|
Kun Luo
|
XueYou Zhang
|
Jun Zhao
|
Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Knowledge-Enhanced Large Language Models (K-LLMs) system enhances Large Language Models (LLMs) abilities using external knowledge. Existing K-LLMs toolkits mainly focus on free-textual knowledge, lacking support for heterogeneous knowledge like tables and knowledge graphs, and fall short in comprehensive datasets, models, and user-friendly experience. To address this gap, we introduce KMatrix: a flexible heterogeneous knowledge enhancement toolkit for LLMs including verbalizing-retrieval and parsing-query methods. Our modularity and control-logic flow diagram design flexibly supports the entire lifecycle of various complex K-LLMs systems, including training, evaluation, and deployment. To assist K-LLMs system research, a series of related knowledge, datasets, and models are integrated into our toolkit, along with performance analyses of K-LLMs systems enhanced by different types of knowledge. Using our toolkit, developers can rapidly build, evaluate, and deploy their own K-LLMs systems.
pdf
bib
abs
M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
Jianlyu Chen
|
Shitao Xiao
|
Peitian Zhang
|
Kun Luo
|
Defu Lian
|
Zheng Liu
Findings of the Association for Computational Linguistics: ACL 2024
In this paper, we introduce a new embedding model called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It provides a uniform support for the semantic retrieval of more than 100 working languages. It can simultaneously accomplish the three common retrieval functionalities: dense retrieval, multi-vector retrieval, and sparse retrieval. Besides, it is also capable of processing inputs of different granularities, spanning from short sentences to long documents of up to 8,192 tokens. The effective training of M3-Embedding presents a series of technical contributions. Notably, we propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, which enables a large batch size and high training throughput to improve the discriminativeness of embeddings. M3-Embedding exhibits a superior performance in our experiment, leading to new state-of-the-art results on multilingual, cross-lingual, and long-document retrieval benchmarks.
pdf
bib
abs
Open Event Causality Extraction by the Assistance of LLM in Task Annotation, Dataset, and Method
Kun Luo
|
Tong Zhou
|
Yubo Chen
|
Jun Zhao
|
Kang Liu
Proceedings of the Workshop: Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning (NeusymBridge) @ LREC-COLING-2024
Event Causality Extraction (ECE) aims to extract explicit causal relations between event pairs from the text. However, the event boundary deviation and the causal event pair mismatching are two crucial challenges that remain unaddressed. To address the above issues, we propose a paradigm to utilize LLM to optimize the task definition, evolve the datasets, and strengthen our proposed customized Contextual Highlighting Event Causality Extraction framework (CHECE). Specifically in CHECE, we propose an Event Highlighter and an Event Concretization Module, guiding the model to represent the event by a higher-level cluster and consider its causal counterpart in event boundary prediction to deal with event boundary deviation. And we propose a Contextual Event Causality Matching mechanism, meanwhile, applying LLM to diversify the content templates to force the model to learn causality from context to targeting on causal event pair mismatching. Experimental results on two ECE datasets demonstrate the effectiveness of our method.