2025
pdf
bib
abs
EfficientQAT: Efficient Quantization-Aware Training for Large Language Models
Mengzhao Chen
|
Wenqi Shao
|
Peng Xu
|
Jiahao Wang
|
Peng Gao
|
Kaipeng Zhang
|
Ping Luo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) are crucial in modern natural language processing and artificial intelligence. However, they face challenges in managing their significant memory requirements. Although quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss, it is impractical due to substantial training resources. To address this, we propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm. EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP). To the best of our knowledge, Block-AP is the first method to enable direct training of all parameters in a block-wise manner, reducing accuracy loss in low-bit scenarios by enhancing the solution space during optimization. E2E-QP then trains only the quantization parameters (step sizes) end-to-end, further improving the performance of quantized models by considering interactions among all sub-modules. Extensive experiments demonstrate that EfficientQAT outperforms previous quantization methods across a range of models, including base LLMs, instruction-tuned LLMs, and multimodal LLMs, with scales from 7B to 70B parameters at various quantization bits. For instance, EfficientQAT obtains a 2-bit Llama-2-70B model on a single A100-80GB GPU in 41 hours, with less than 3 points accuracy degradation compared to the full precision (69.48 vs. 72.41). Code is available at https://github.com/OpenGVLab/EfficientQAT.
pdf
bib
abs
MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification
xu Zhao Pan
|
Pengfei Zhou
|
Jiaxin Ai
|
Wangbo Zhao
|
Kai Wang
|
Xiaojiang Peng
|
Wenqi Shao
|
Hongxun Yao
|
Kaipeng Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, whereas the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answers Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.
2024
pdf
bib
abs
T3M: Text Guided 3D Human Motion Synthesis from Speech
Wenshuo Peng
|
Kaipeng Zhang
|
Sai Qian Zhang
Findings of the Association for Computational Linguistics: NAACL 2024
Speech-driven 3D motion synthesis seeks to create lifelike animations based on human speech, with potential uses in virtual reality, gaming, and the film production. Existing approaches reply solely on speech audio for motion generation, leading to inaccurate and inflexible synthesis results. To mitigate this problem, we introduce a novel text-guided 3D human motion synthesis method, termed T3M. Unlike traditional approaches, T3M allows precise control over motion synthesis via textual input, enhancing the degree of diversity and user customization. The experiment results demonstrate that T3M can greatly outperform the state-of-the-art methods in both quantitative metrics and qualitative evaluations. We have publicly released our code at https://github.com/Gloria2tt/naacl2024.git
pdf
bib
abs
ChartAssistant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning
Fanqing Meng
|
Wenqi Shao
|
Quanfeng Lu
|
Peng Gao
|
Kaipeng Zhang
|
Yu Qiao
|
Ping Luo
Findings of the Association for Computational Linguistics: ACL 2024
Charts play a vital role in data visualization, understanding data patterns, and informed decision-making. However, their unique combination of graphical elements (e.g., bars, lines) and textual components (e.g., labels, legends) poses challenges for general-purpose multimodal models. While vision-language models trained on chart data excel in comprehension, they struggle with generalization. To address these challenges, we propose ChartAssistant, a chart-based vision-language model for universal chart comprehension and reasoning. ChartAssistant leverages ChartSFT, a comprehensive dataset covering diverse chart-related tasks with basic (e.g. bars and pies) and specialized (e.g. radars, and bubbles) chart types. It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text, followed by multitask instruction-following fine-tuning. This approach enables ChartAssistant to achieve competitive performance across various chart tasks. Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and ChartLlama methods, especially outperforming them on real-world chart data with zero-shot setting. The code and data are available at https://github.com/OpenGVLab/ChartAst.