JunYang JunYang


2025

pdf bib
Review-Instruct: A Review-Driven Multi-Turn Conversations Generation Method for Large Language Models
Jiangxu Wu | Cong Wang | Tianhuang Su | Lin Haozhi | JunYang JunYang | Zhangchao Zhangchao | Binqiang Pan | SongpanYang SongpanYang | Mingpeng Mingpeng | Kai Shi | Zixian Li
Findings of the Association for Computational Linguistics: ACL 2025

The effectiveness of large language models (LLMs) in conversational AI is hindered by their reliance on single-turn supervised fine-tuning (SFT) data, which limits contextual coherence in multi-turn dialogues. Existing methods for generating multi-turn dialogue data struggle to ensure both diversity and quality in instructions. To address this, we propose Review-Instruct, a novel framework that synthesizes multi-turn conversations through an iterative “Ask-Respond-Review” process involving three agent roles: a Candidate, multiple Reviewers, and a Chairman. The framework iteratively refines instructions by incorporating Reviewer feedback, enhancing dialogue diversity and difficulty. We construct a multi-turn dataset using the Alpaca dataset and fine-tune the LLaMA2-13B model. Evaluations on MT-Bench, MMLU-Pro, and Auto-Arena demonstrate significant improvements, achieving absolute gains of 2.9% on MMLU-Pro and 2% on MT-Bench compared to prior state-of-the-art models based on LLaMA2-13B. Ablation studies confirm the critical role of the Review stage and the use of multiple Reviewers in boosting instruction diversity and difficulty. Our work highlights the potential of review-driven, multi-agent frameworks for generating high-quality conversational data at scale.

2024

pdf bib
Teaching Small Language Models to Reason for Knowledge-Intensive Multi-Hop Question Answering
Xiang Li | Shizhu He | Fangyu Lei | JunYang JunYang | Tianhuang Su | Kang Liu | Jun Zhao
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) can teach small language models (SLMs) to solve complex reasoning tasks (e.g., mathematical question answering) by Chain-of-thought Distillation (CoTD). Specifically, CoTD fine-tunes SLMs by utilizing rationales generated from LLMs such as ChatGPT. However, CoTD has certain limitations that make it unsuitable for knowledge-intensive multi-hop question answering: 1) SLMs have a very limited capacity in memorizing required knowledge compared to LLMs. 2) SLMs do not possess the same powerful integrated abilities in question understanding and knowledge reasoning as LLMs. To address the above limitations, we introduce Decompose-and-Response Distillation (D&R Distillation), which distills two student models, namely Decomposer and Responser separately. The two models solve a knowledge-intensive multi-hop question through an interactive process of asking and answering subquestions. Our method offers two advantages: 1) SLMs have the capability to access external knowledge to address subquestions, which provides more comprehensive knowledge for multi-hop questions. 2) By employing simpler subquestions instead of complex CoT reasoning, SLMs effectively mitigate task complexity and decrease data prerequisites. Experimental results on three knowledge-intensive multi-hop question answering datasets demonstrate that D&R Distillation can surpass previous CoTD methods, even with much less training data.