Junkang Wu


2025

pdf bib
Robust Preference Optimization via Dynamic Target Margins
Jie Sun | Junkang Wu | Jiancan Wu | Zhibo Zhu | Xingyu Lu | Jun Zhou | Lintao Ma | Xiang Wang
Findings of the Association for Computational Linguistics: ACL 2025

The alignment of Large Language Models (LLMs) is crucial for ensuring their safety and reliability in practical applications. Direct Preference Optimization (DPO) has emerged as an efficient method that directly optimizes models using preference pairs, significantly reducing resource demands. However, the effectiveness of DPO heavily depends on the data quality, which is frequently compromised by noise. In this work, we propose 𝛾-PO, a dynamic target margin preference optimization algorithm that adjust reward margins at the pairwise level. By introducing instance-specific margin calibration, 𝛾-PO strategically prioritizes high-confidence pairs (those demonstrating higher reward margins) while suppressing potential noise from ambiguous pairs. Moreover, 𝛾-PO is a plug-and-play method, compatible with variants of DPO that rely on reward margin between preference pairs. Across benchmarks such as AlpacaEval2 and Arena-Hard, 𝛾-PO achieves an average 4.4% improvement over other baselines, setting new benchmarks for state-of-the-art performance. Additionally, 𝛾-PO requires minimal code changes and has a negligible impact on training efficiency, making it a robust solution for enhancing LLMs alignment. Our codes are available at https://github.com/sunjie279/gammaPO.

2024

pdf bib
Direct Multi-Turn Preference Optimization for Language Agents
Wentao Shi | Mengqi Yuan | Junkang Wu | Qifan Wang | Fuli Feng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.