Junfeng Guo


2025

pdf bib
Improved Unbiased Watermark for Large Language Models
Ruibo Chen | Yihan Wu | Junfeng Guo | Heng Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model’s vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark’s potential in enhancing the practical application of watermarking in AI-generated texts.

pdf bib
Asymmetric Conflict and Synergy in Post-training for LLM-based Multilingual Machine Translation
Tong Zheng | Yan Wen | Huiwen Bao | Junfeng Guo | Heng Huang
Findings of the Association for Computational Linguistics: ACL 2025

The emergence of Large Language Models (LLMs) has advanced the multilingual machine translation (MMT), yet the Curse of Multilinguality (CoM) remains a major challenge. Existing work in LLM-based MMT typically mitigates this issue via scaling up training and computation budget, which raises a critical question: Is scaling up the training and computation budget truly necessary for high-quality MMT, or can a deeper understanding of CoM provide a more efficient solution? To explore this problem, we analyze the linguistic conflicts and synergy, the underlying mechanism of CoM during post-training phase. We identify an asymmetric phenomenon in linguistic conflicts and synergy: the dominance of conflicts and synergy varies in different translation directions, leading to sub-optimal adaptation in existing post-training methods. We further find that a significant bottleneck in MMT appears to lie in post-training rather than multilingual pre-training, suggesting the need for more effective adaptation strategies. Building on these new insights, we propose a direction-aware training approach, combined with group-wise model merging, to address asymmetry in linguistic conflicts and synergy explicitly. Leveraging this strategy, our method fine-tunes X-ALMA-13B-Pretrain—trained only with multilingual pre-training—achieving comparable performance to XALMA-13B (only SFT) while using only 20B pretraining tokens and 17B parameters—5.5× fewer pretraining-tokens and 1.7x fewer model size—with just 0.85 COMET drop on Flores-200 testsets of 50 languages.

2024

pdf bib
Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection
Ruibo Chen | Yihan Wu | Lichang Chen | Guodong Liu | Qi He | Tianyi Xiong | Chenxi Liu | Junfeng Guo | Heng Huang
Findings of the Association for Computational Linguistics: ACL 2024

Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.