2025
pdf
bib
abs
AXIS: Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents
Junting Lu
|
Zhiyang Zhang
|
Fangkai Yang
|
Jue Zhang
|
Lu Wang
|
Chao Du
|
Qingwei Lin
|
Saravan Rajmohan
|
Dongmei Zhang
|
Qi Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents’ performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework that prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Microsoft Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compared to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and explores a fresh UI design principle for application providers to turn applications into agents in the era of LLMs, paving the way towards an agent-centric operating system (Agent OS). The code and dataset will be available at https://aka.ms/haci_axis.
pdf
bib
abs
TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning
Shivam Shandilya
|
Menglin Xia
|
Supriyo Ghosh
|
Huiqiang Jiang
|
Jue Zhang
|
Qianhui Wu
|
Victor Rühle
|
Saravan Rajmohan
Findings of the Association for Computational Linguistics: ACL 2025
The increasing prevalence of large language models (LLMs) such as GPT-4 in various applications has led to a surge in the size of prompts required for optimal performance, leading to challenges in computational efficiency. Prompt compression aims to reduce the inference cost by minimizing input tokens without compromising on the task performance. However, existing prompt compression techniques either rely on sub-optimal metrics such as information entropy or model it as a task-agnostic token classification problem that fails to capture task-specific information.To address these issues, we propose a novel and efficient reinforcement learning (RL) based task-aware prompt compression method. To ensure low latency requirements, we leverage existing Transformer encoder-based token classification model while guiding the learning process with task-specific reward signals using lightweight REINFORCE algorithm. We evaluate the performance of our method on three diverse and challenging tasks including text summarization, question answering and code summarization. We demonstrate that our RL-guided compression method improves the task performance by 8% - 189% across these three scenarios over state-of-the-art compression techniques while satisfying the same compression rate and latency requirements.
2024
pdf
bib
abs
LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
Zhuoshi Pan
|
Qianhui Wu
|
Huiqiang Jiang
|
Menglin Xia
|
Xufang Luo
|
Jue Zhang
|
Qingwei Lin
|
Victor Rühle
|
Yuqing Yang
|
Chin-Yew Lin
|
H. Vicky Zhao
|
Lili Qiu
|
Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL 2024
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective.To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.
pdf
bib
abs
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Jia Fu
|
Xiaoting Qin
|
Fangkai Yang
|
Lu Wang
|
Jue Zhang
|
Qingwei Lin
|
Yubo Chen
|
Dongmei Zhang
|
Saravan Rajmohan
|
Qi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 ≈ 0.8 for scenarios with prominent gradients in search space, using only ~20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
2023
pdf
bib
abs
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Fangkai Yang
|
Pu Zhao
|
Zezhong Wang
|
Lu Wang
|
Bo Qiao
|
Jue Zhang
|
Mohit Garg
|
Qingwei Lin
|
Saravan Rajmohan
|
Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.