Joykirat Singh


2025

pdf bib
Exposing the Achilles’ Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning
Joykirat Singh | Akshay Nambi | Vibhav Vineet
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have significantly impacted the field of Math Word Problems (MWPs), transforming how these problems are approached and solved, particularly in educational contexts. However, existing evaluations often focus on final accuracy, neglecting the critical aspect of reasoning capabilities. This work addresses that gap by evaluating LLMs’ abilities to detect and correct reasoning mistakes. We present a novel dataset, MWP-MISTAKE, containing MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models. Our comprehensive benchmarking of state-of-the-art models such as GPT-4o and GPT4 uncovers important insights into their strengths and limitations. While GPT-4o excels in mistake detection and rectification, gaps remain, particularly in handling complex datasets and novel problems. Additionally, we identify concerns with data contamination and memorization, which affect LLM reliability in real-world applications. While OpenAI’ O1 model demonstrates 90% accuracy in reasoning and final answers on complex tasks, it remains weak in mistake detection. Our findings highlight the need for improved reasoning evaluations and suggest ways to enhance LLM generalization and robustness in math problem-solving.

pdf bib
PromptWizard: Optimizing Prompts via Task-Aware, Feedback-Driven Self-Evolution
Eshaan Agarwal | Raghav Magazine | Joykirat Singh | Vivek Dani | Tanuja Ganu | Akshay Nambi
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have transformed AI across diverse domains, with prompting being central to their success in guiding model outputs. However, manual prompt engineering is both labor-intensive and domain-specific, necessitating the need for automated solutions. We introduce PromptWizard, a novel, fully automated framework for discrete prompt optimization, utilizing a self-evolving, self-adapting mechanism. Through a feedback-driven critique and synthesis process, PromptWizard achieves an effective balance between exploration and exploitation, iteratively refining both prompt instructions and in-context examples to generate human-readable, task-specific prompts. This guided approach systematically improves prompt quality, resulting in superior performance across 45 tasks. PromptWizard excels even with limited training data, smaller LLMs, and various LLM architectures. Additionally, our cost analysis reveals a substantial reduction in API calls, token usage, and overall cost, demonstrating PromptWizard’s efficiency, scalability, and advantages over existing prompt optimization strategies.

2024

pdf bib
EROS:Entity-Driven Controlled Policy Document Summarization
Joykirat Singh | Sehban Fazili | Rohan Jain | Md. Shad Akhtar
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Privacy policy documents have a crucial role in educating individuals about the collection, usage, and protection of users’ personal data by organizations. However, they are notorious for their lengthy, complex, and convoluted language especially involving privacy-related entities. Hence, they pose a significant challenge to users who attempt to comprehend organization’s data usage policy. In this paper, we propose to enhance the interpretability and readability of policy documents by using controlled abstractive summarization – we enforce the generated summaries to include critical privacy-related entities (e.g., data and medium) and organization’s rationale (e.g., target and reason) in collecting those entities. To achieve this, we develop PD-Sum, a policy-document summarization dataset with marked privacy-related entity labels. Our proposed model, EROS, identifies critical entities through a span-based entity extraction model and employs them to control the information content of the summaries using proximal policy optimization (PPO). Comparison shows encouraging improvement over various baselines. Furthermore, we furnish qualitative and human evaluations to establish the efficacy of EROS.