Joshua Tanner
2025
CoAM: Corpus of All-Type Multiword Expressions
Yusuke Ide
|
Joshua Tanner
|
Adam Nohejl
|
Jacob Hoffman
|
Justin Vasselli
|
Hidetaka Kamigaito
|
Taro Watanabe
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multiword expressions (MWEs) refer to idiomatic sequences of multiple words.MWE identification, i.e., detecting MWEs in text, can play a key role in downstream tasks such as machine translation, but existing datasets for the task are inconsistently annotated, limited to a single type of MWE, or limited in size.To enable reliable and comprehensive evaluation, we created CoAM: Corpus of All-Type Multiword Expressions, a dataset of 1.3K sentences constructed through a multi-step process to enhance data quality consisting of human annotation, human review, and automated consistency checking.Additionally, for the first time in a dataset of MWE identification, CoAM’s MWEs are tagged with MWE types, such as Noun and Verb, enabling fine-grained error analysis.Annotations for CoAM were collected using a new interface created with our interface generator, which allows easy and flexible annotation of MWEs in any form.Through experiments using CoAM, we find that a fine-tuned large language model outperforms MWEasWSD, which achieved the state-of-the-art performance on the DiMSUM dataset.Furthermore, analysis using our MWE type tagged data reveals that Verb MWEs are easier than Noun MWEs to identify across approaches.
Context-Informed Machine Translation of Manga using Multimodal Large Language Models
Philip Lippmann
|
Konrad Skublicki
|
Joshua Tanner
|
Shonosuke Ishiwatari
|
Jie Yang
Proceedings of the 31st International Conference on Computational Linguistics
Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset – the first parallel Japanese-Polish manga translation dataset – as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.
2023
MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation
Joshua Tanner
|
Jacob Hoffman
Findings of the Association for Computational Linguistics: EMNLP 2023
Recent approaches to word sense disambiguation (WSD) utilize encodings of the sense gloss (definition), in addition to the input context, to improve performance. In this work we demonstrate that this approach can be adapted for use in multiword expression (MWE) identification by training models which use gloss and context information to filter MWE candidates produced by a rule-based extraction pipeline. Our approach substantially improves precision, outperforming the state-of-the-art in MWE identification on the DiMSUM dataset by up to 1.9 F1 points and achieving competitive results on the PARSEME 1.1 English dataset. Our models also retain most of their WSD performance, showing that a single model can be used for both tasks. Finally, building on similar approaches using Bi-encoders for WSD, we introduce a novel Poly-encoder architecture which improves MWE identification performance.
Search
Fix author
Co-authors
- Jacob Hoffman 2
- Yusuke Ide 1
- Shonosuke Ishiwatari 1
- Hidetaka Kamigaito 1
- Philip Lippmann 1
- show all...