Dense retrievers encode texts into embeddings to efficiently retrieve relevant documents from large databases in response to user queries. However, real-world corpora continually evolve, leading to a shift from the original training distribution of the retriever. Without timely updates or retraining, indexing newly emerging documents can degrade retrieval performance for future queries. Thus, identifying when a dense retriever requires an update is critical for maintaining robust retrieval systems. In this paper, we propose a novel task of predicting whether a corpus is out-of-distribution (OOD) relative to a dense retriever before indexing. Addressing this task allows us to proactively manage retriever updates, preventing potential retrieval failures. We introduce GradNormIR, an unsupervised approach that leverages gradient norms to detect OOD corpora effectively. Experiments on the BEIR benchmark demonstrate that GradNormIR enables timely updates of dense retrievers in evolving document collections, significantly enhancing retrieval robustness and efficiency.
In the real world, knowledge is constantly evolving, which can render existing knowledge-based datasets outdated. This unreliability highlights the critical need for continuous updates to ensure both accuracy and relevance in knowledge-intensive tasks. To address this, we propose GrowOVER-QA and GrowOVER-Dialogue, dynamic open-domain QA and dialogue benchmarks that undergo a continuous cycle of updates, keeping pace with the rapid evolution of knowledge. Our research indicates that retrieval-augmented language models (RaLMs) struggle with knowledge that has not been trained on or recently updated. Consequently, we introduce a novel retrieval-interactive language model framework, where the language model evaluates and reflects on its answers for further re-retrieval. Our exhaustive experiments demonstrate that our training-free framework significantly improves upon existing methods, performing comparably to or even surpassing continuously trained language models.
In the rapidly evolving landscape of language, resolving new linguistic expressions in continuously updating knowledge bases remains a formidable challenge. This challenge becomes critical in retrieval-augmented generation (RAG) with knowledge bases, as emerging expressions hinder the retrieval of relevant documents, leading to generator hallucinations. To address this issue, we introduce a novel task aimed at resolving emerging mentions to dynamic entities and present DynamicER benchmark. Our benchmark includes dynamic entity mention resolution and entity-centric knowledge-intensive QA task, evaluating entity linking and RAG model’s adaptability to new expressions, respectively. We discovered that current entity linking models struggle to link these new expressions to entities. Therefore, we propose a temporal segmented clustering method with continual adaptation, effectively managing the temporal dynamics of evolving entities and emerging mentions. Extensive experiments demonstrate that our method outperforms existing baselines, enhancing RAG model performance on QA task with resolved mentions.
The Situated Interactive MultiModal Conversations (SIMMC2.1) Challenge 2022 is hosted by the Eleventh Dialog System Technology Challenge (DSTC11). This is the third consecutive year multimodal dialog systems have been selected as an official track of the competition, promoted by the continued interest in the research community. The task of SIMMC is to create a shopping assistant agent that can communicate with customers in a virtual store. It requires processing store scenes and product catalogs along with the customer’s request. The task is decomposed into four steps and each becomes a subtask. In this work, we explore the common approaches to modeling multimodality and find the method with the most potential. We also identify a discrepancy in using pretrained language models for dialog tasks and devise a simple domain-adaptation method. Our model came in third place for object coreferencing, dialog state tracking, and response generation tasks.