Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools. Existing approaches face significant challenges, including reliance on hand-crafted prompts, difficulty in multi-step planning, and lack of precise error diagnosis and reflection mechanisms. We propose ToolCoder, a novel framework that reformulates tool learning as a code generation task. Inspired by software engineering principles, ToolCoder transforms natural language queries into structured Python function scaffold and systematically breaks down tasks with descriptive comments, enabling LLMs to leverage coding paradigms for complex reasoning and planning. It then generates and executes function implementations to obtain final responses. Additionally, ToolCoder stores successfully executed functions in a repository to promote code reuse, while leveraging error traceback mechanisms for systematic debugging, optimizing both execution efficiency and robustness. Experiments demonstrate that ToolCoder achieves superior performance in task completion accuracy and execution reliability compared to existing approaches, establishing the effectiveness of code-centric approaches in tool learning.
There has been a surge of interest regarding language adaptation of Large Language Models (LLMs) to enhance the processing of texts in low-resource languages. While traditional language models have seen extensive research on language transfer, modern LLMs still necessitate further explorations in language adaptation. In this paper, we present a systematic review of the language adaptation process for LLMs, including vocabulary expansion, continued pre-training, and instruction fine-tuning, which focuses on empirical studies conducted on LLaMA2 and discussions on various settings affecting the model’s capabilities. This study provides helpful insights covering the entire language adaptation process, and highlights the compatibility and interactions between different steps, offering researchers a practical guidebook to facilitate the effective adaptation of LLMs across different languages.
Despite the success of large language models (LLMs) in natural language generation, much evidence shows that LLMs may produce incorrect or nonsensical text. This limitation highlights the importance of discerning when to trust LLMs, especially in safety-critical domains. Existing methods often express reliability by confidence level, however, their effectiveness is limited by the lack of objective guidance. To address this, we propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD), which leverages reinforcement learning guided by a tailored dual-component reward function. This function integrates quality reward and order-preserving alignment reward functions. Specifically, the order-preserving reward incentivizes the model to verbalize greater confidence for responses of higher quality to align the order of confidence and quality. Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy, without causing over-cautious. Furthermore, the aligned confidence provided by CONQORD informs when to trust LLMs, and acts as a determinant for initiating the retrieval process of external knowledge. Aligning confidence with response quality ensures more transparent and reliable responses, providing better trustworthiness.