Jinming Zhang
2025
MLD-EA: Check and Complete Narrative Coherence by Introducing Emotions and Actions
Jinming Zhang
|
Yunfei Long
Proceedings of the 31st International Conference on Computational Linguistics
Narrative understanding and story generation are critical challenges in natural language processing (NLP), with much of the existing research focused on summarization and question-answering tasks. While previous studies have explored predicting plot endings and generating extended narratives, they often neglect the logical coherence within stories, leaving a significant gap in the field. To address this, we introduce the Missing Logic Detector by Emotion and Action (MLD-EA) model, which leverages large language models (LLMs) to identify narrative gaps and generate coherent sentences that integrate seamlessly with the story’s emotional and logical flow. The experimental results demonstrate that the MLD-EA model enhances narrative understanding and story generation, highlighting LLMs’ potential as effective logic checkers in story writing with logical coherence and emotional consistency. This work fills a gap in NLP research and advances border goals of creating more sophisticated and reliable story-generation systems.
Learning to Play Like Humans: A Framework for LLM Adaptation in Interactive Fiction Games
Jinming Zhang
|
Yunfei Long
Findings of the Association for Computational Linguistics: ACL 2025
Interactive Fiction games (IF games) are where players interact through natural language commands. While recent advances in Artificial Intelligence agents have reignited interest in IF games as a domain for studying decision-making, existing approaches prioritize task-specific performance metrics over human-like comprehension of narrative context and gameplay logic. This work presents a cognitively inspired framework that guides Large Language Models (LLMs) to learn and play IF games systematically. Our proposed **L**earning to **P**lay **L**ike **H**umans (LPLH) framework integrates three key components: (1) structured map building to capture spatial and narrative relationships, (2) action learning to identify context-appropriate commands, and (3) feedback-driven experience analysis to refine decision-making over time. By aligning LLMs-based agents’ behavior with narrative intent and commonsense constraints, LPLH moves beyond purely exploratory strategies to deliver more interpretable, human-like performance. Crucially, this approach draws on cognitive science principles to more closely simulate how human players read, interpret, and respond within narrative worlds. As a result, LPLH reframes the IF games challenge as a learning problem for LLMs-based agents, offering a new path toward robust, context-aware gameplay in complex text-based environments.