Jingping Liu


2025

pdf bib
Can Multimodal Large Language Models Understand Spatial Relations?
Jingping Liu | Ziyan Liu | Zhedong Cen | Yan Zhou | Yinan Zou | Weiyan Zhang | Haiyun Jiang | Tong Ruan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model’s prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://huggingface.co/datasets/liuziyan/SpatialMQA.

pdf bib
Text-to-ES Bench: A Comprehensive Benchmark for Converting Natural Language to Elasticsearch Query
DonggeXue DonggeXue | Zhili Pu | Zhentao Xia | Hongli Sun | Ruihui Hou | Guangya Yu | Yupian Lin | Yongqi Fan | Jingping Liu | Tong Ruan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Elasticsearch (ES) is a distributed RESTful search engine optimized for large-scale and long-text search scenarios. Recent research on text-to-Query has explored using large language models (LLMs) to convert user query intent to executable code, making it an increasingly popular research topic. To our knowledge, we are the first to introduce the novel semantic parsing task text-to-ES. To bridge the gap between LLM and ES, in detail, we leverage LLMs and employ domain experts to generate ES query bodies, which are Domain-Specific Language (DSL), along with the corresponding post-processing code to support multi-index ES queries. Consequently, we propose the text-to-ES benchmark that consists of two datasets: Large Elasticsearch Dataset (LED), containing 26,207 text-ES pairs derived from a 224.9GB schema-free database, and ElasticSearch (BirdES)with 10,926 pairs sourced from the Bird dataset on a 33.4GB schema-fixed database. Compared with fourteen advanced LLMs and six code-based LLMs, the model we trained outperformed DeepSeek-R1 by 15.64% on the LED dataset, setting a new state-of-the-art, and achieved 78% of DeepSeek-R1’s performance on the BirdES dataset. Additionally, we provide in-depth experimental analyses and suggest future research directions for this task. Our datasets are available at https://huggingface.co/datasets/Barry1915/Text-to-ES.

pdf bib
PToco: Prefix-based Token-level Collaboration Enhances Reasoning for Multi-LLMs
Yuang Bian | Yupian Lin | Jingping Liu | Tong Ruan
Proceedings of the 31st International Conference on Computational Linguistics

Collaboration between multiple Large Language Models (LLMs) has attracted significant attention for its potential to mitigate hallucinations and enhance reasoning capabilities. Previous approaches, such as multi-agent debate and decoding-time integration, either rely on highly capable models with strong self-reflection abilities or are limited to models sharing the same tokenizer. To address these limitations, we introduce PToco (Prefix-based Token-level Collaboration), a novel mechanism that enables effective collaboration among less capable LLMs, independent of tokenizer differences. PToco uses a prefix-grouping method to extract consensus among tokens with varying levels of granularity, ensuring coherent and robust token generation across multiple models. Experimental results on a series of reasoning tasks demonstrate that PToco significantly improves performance over individual models. Furthermore, this approach generalizes well across different quantities and sizes of participating models, providing a more flexible and efficient solution for multi-LLM ensembles.

pdf bib
MedEureka: A Medical Domain Benchmark for Multi-Granularity and Multi-Data-Type Embedding-Based Retrieval
Yongqi Fan | Nan Wang | Kui Xue | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: NAACL 2025

Embedding-based retrieval (EBR), the mainstream approach in information retrieval (IR), aims to help users obtain relevant information and plays a crucial role in retrieval-augmented generation (RAG) techniques of large language models (LLMs). Numerous methods have been proposed to significantly improve the quality of retrieved content and many generic benchmarks are proposed to evaluate the retrieval abilities of embedding models. However, texts in the medical domain present unique contexts, structures, and language patterns, such as terminology, doctor-patient dialogue, and electronic health records (EHRs). Despite these unique features, specific benchmarks for medical context retrieval are still lacking. In this paper, we propose MedEureka, an enriched benchmark designed to evaluate medical-context retrieval capabilities of embedding models with multi-granularity and multi-data types. MedEureka includes four levels of granularity and six types of medical texts, encompassing 18 datasets, incorporating granularity and data type description to prompt instruction-fine-tuned text embedding models for embedding generation. We also provide the MedEureka Toolkit to support evaluation on the MedEureka test set. Our experiments evaluate state-of-the-art open-source and proprietary embedding models, and fine-tuned classical baselines, providing a detailed performance analysis. This underscores the challenges of using embedding models for medical domain retrieval and the need for further research. Our code and data are released in the repository: https://github.com/JOHNNY-fans/MedEureka.

pdf bib
CMQCIC-Bench: A Chinese Benchmark for Evaluating Large Language Models in Medical Quality Control Indicator Calculation
Guangya Yu | Yanhao Li | Zongying Jiang | Yuxiong Jin | Li Dai | Yupian Lin | Ruihui Hou | Weiyan Zhang | Yongqi Fan | Qi Ye | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2025

Medical quality control indicators are essential to assess the qualifications of healthcare institutions for medical services. With the impressive performance of large language models (LLMs) like GPT-4 in the medical field, leveraging these technologies for the Medical Quality Control Indicator Calculation (MQCIC) presents a promising approach. In this work, (1) we introduce a real-world task MQCIC and propose an open-source Chinese electronic medical records (EMRs)-based dataset (CMQCIC-Bench) comprising 785 instances and 76 indicators. (2) We propose a semi-automatic method to enhance the rule representation. Then we propose the Clinical Facts-based Inferential Rule (CF-IR) method that disentangles the clinical fact verification and inferential rule reasoning actions. (3) We conduct comprehensive experiments on 20 representative LLMs, covering general and medical models. Our findings reveal that CF-IR outperforms Chain-of-Thought methods in MQCIC tasks. (4) We conduct an error analysis and investigate the capabilities of clinical fact verification and inferential rule reasoning, providing insights to improve performance in the MQCIC further. The dataset and code is available in this repository https://github.com/YuY-2001/C-MQCIC.

pdf bib
MinosEval: Distinguishing Factoid and Non-Factoid for Tailored Open-Ended QA Evaluation with LLMs
Yongqi Fan | Yating Wang | Guandong Wang | Zhai Jie | Jingping Liu | Qi Ye | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2025

Open-ended question answering (QA) is a key task for evaluating the capabilities of large language models (LLMs). Compared to closed-ended QA, it demands longer answer statements, more nuanced reasoning processes, and diverse expressions, making refined and interpretable automatic evaluation both crucial and challenging. Traditional metrics like ROUGE and BERTScore struggle to capture semantic similarities due to different patterns between model responses and reference answers. Current LLM-based evaluation approaches, such as pairwise or listwise comparisons of candidate answers, lack intuitive interpretability. While pointwise scoring of each response provides some descriptions, it fails to adapt across different question contents. Most notably, existing methods overlook the distinction between factoid and non-factoid questions. To address these challenges, we propose MinosEval, a novel evaluation method that first distinguishes open-ended questions and then ranks candidate answers using different evaluation strategies. For factoid questions, it applies an adaptive key-point scoring strategy, while for non-factoid questions, it uses an instance-aware listwise ranking strategy. Experiments on multiple open-ended QA datasets, including self-built ones with more candidate responses to complement community resources, show that MinosEval better aligns with human annotations and offers more interpretable results.

pdf bib
EMRs2CSP : Mining Clinical Status Pathway from Electronic Medical Records
Yifei Chen | Ruihui Hou | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2025

Many current studies focus on extracting tests or treatments when constructing clinical pathways, often neglecting the patient’s symptoms and diagnosis, leading to incomplete diagnostic and therapeutic logic. Therefore, this paper aims to extract clinical pathways from electronic medical records that encompass complete diagnostic and therapeutic logic, including temporal information, patient symptoms, diagnosis, and tests or treatments. To achieve this objective, we propose a novel clinical pathway representation: the clinical status pathway. We also design a LLM-based pipeline framework for extracting clinical status pathway from electronic medical records, with the core concept being to improve extraction accuracy by modeling the diagnostic and treatment processes. In our experiments, we apply this framework to construct a comprehensive breast cancer-specific clinical status pathway and evaluate its performance on medical question-answering and decision-support tasks, demonstrating significant improvements over traditional clinical pathways. The code is publicly available at https://github.com/finnchen11/EMRs2CSP.

2024

pdf bib
RRNorm: A Novel Framework for Chinese Disease Diagnoses Normalization via LLM-Driven Terminology Component Recognition and Reconstruction
Yongqi Fan | Yansha Zhu | Kui Xue | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2024

The Clinical Terminology Normalization aims at finding standard terms from a given termbase for mentions extracted from clinical texts. However, we found that extracted mentions suffer from the multi-implication problem, especially disease diagnoses. The reason for this is that physicians often use abbreviations, conjunctions, and juxtapositions when writing diagnoses, and it is difficult to manually decompose. To address this problem, we propose a Terminology Component Recognition and Reconstruction strategy that leverages the reasoning capability of large language models (LLMs) to recognize the components of terms, enabling automated decomposition and transforming original mentions into multiple atomic mentions. Furthermore, we adopt the mainstream “Recall and Rank” framework to apply the benefits of the above strategy to the task flow. By leveraging the LLM incorporating the advanced sampling strategies, we design a sampling algorithm for atomic mentions and train the recall model using contrastive learning. Besides the information about the components is also used as knowledge to guide the final term ranking and selection. The experimental results show that our proposed strategy effectively improves the performance of the terminology normalization task and our proposed approach achieves state-of-the-art on the experimental dataset. We release our code and data on the repository https://github.com/yuugaochyan/RRNorm.

pdf bib
Unexpected Phenomenon: LLMs’ Spurious Associations in Information Extraction
Weiyan Zhang | Wanpeng Lu | Jiacheng Wang | Yating Wang | Lihan Chen | Haiyun Jiang | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2024

Information extraction plays a critical role in natural language processing. When applying large language models (LLMs) to this domain, we discover an unexpected phenomenon: LLMs’ spurious associations. In tasks such as relation extraction, LLMs can accurately identify entity pairs, even if the given relation (label) is semantically unrelated to the pre-defined original one. To find these labels, we design two strategies in this study, including forward label extension and backward label validation. We also leverage the extended labels to improve model performance. Our comprehensive experiments show that spurious associations occur consistently in both Chinese and English datasets across various LLM sizes. Moreover, the use of extended labels significantly enhances LLM performance in information extraction tasks. Remarkably, there is a performance increase of 9.55%, 11.42%, and 21.27% in F1 scores on the SciERC, ACE05, and DuEE datasets, respectively.

pdf bib
CR-LLM: A Dataset and Optimization for Concept Reasoning of Large Language Models
Nianqi Li | Jingping Liu | Sihang Jiang | Haiyun Jiang | Yanghua Xiao | Jiaqing Liang | Zujie Liang | Feng Wei | Jinglei Chen | Zhenghong Hao | Bing Han
Findings of the Association for Computational Linguistics: ACL 2024

Concept reasoning is an important capability for models to understand the world. However, the existing datasets, such as concept extraction and concept generation, suffer from modeledge leakage and context leakage. To address these limitations, we construct a dataset of concept reasoning for large language models (CR-LLM) with modeledge leakage prevention and context leakage prevention, which consists of 2,167 samples and covers different concept types. In addition, we propose a hybrid reasoning method, consisting of inductive reasoning, deductive reasoning and a controller. This method allows large language models to adaptively select the optimal reasoning method for each input sample. Finally, we conduct extensive experiments on CR-LLM using different models and methods. The results show that existing large language models and reasoning methods perform sub-optimally in the concept reasoning task. In contrast, our proposed method significantly improves the capabilities, achieving a 7% increase in accuracy compared to CoT and demonstrating better granularity. We release CR-LLM and code at https://github.com/Nianqi-Li/Concept-Reasoning-for-LLMs.

pdf bib
CONSTRUCTURE: Benchmarking CONcept STRUCTUre REasoning for Multimodal Large Language Models
Zhiwei Zha | Xiangru Zhu | Yuanyi Xu | Chenghua Huang | Jingping Liu | Zhixu Li | Xuwu Wang | Yanghua Xiao | Bei Yang | Xiaoxiao Xu
Findings of the Association for Computational Linguistics: EMNLP 2024

Multimodal Large Language Models (MLLMs) have shown promising results in various tasks, but their ability to perceive the visual world with deep, hierarchical understanding similar to humans remains uncertain. To address this gap, we introduce CONSTRUCTURE, a novel concept-level benchmark to assess MLLMs’ hierarchical concept understanding and reasoning abilities. Our goal is to evaluate MLLMs across four key aspects: 1) Understanding atomic concepts at different levels of abstraction; 2) Performing upward abstraction reasoning across concepts; 3) Achieving downward concretization reasoning across concepts; and 4) Conducting multi-hop reasoning between sibling or common ancestor concepts. Our findings indicate that even state-of-the-art multimodal models struggle with concept structure reasoning (e.g., GPT-4o averages a score of 62.1%). We summarize key findings of MLLMs in concept structure reasoning evaluation. Morever, we provide key insights from experiments using CoT prompting and fine-tuning to enhance their abilities.

pdf bib
Negation Triplet Extraction with Syntactic Dependency and Semantic Consistency
Yuchen Shi | Deqing Yang | Jingping Liu | Yanghua Xiao | Zongyu Wang | Huimin Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Previous works of negation understanding mainly focus on negation cue detection and scope resolution, without identifying negation subject which is also significant to the downstream tasks. In this paper, we propose a new negation triplet extraction (NTE) task which aims to extract negation subject along with negation cue and scope. To achieve NTE, we devise a novel Syntax&Semantic-Enhanced Negation Extraction model, namely SSENE, which is built based on a generative pretrained language model (PLM) of Encoder-Decoder architecture with a multi-task learning framework. Specifically, the given sentence’s syntactic dependency tree is incorporated into the PLM’s encoder to discover the correlations between the negation subject, cue and scope. Moreover, the semantic consistency between the sentence and the extracted triplet is ensured by an auxiliary task learning. Furthermore, we have constructed a high-quality Chinese dataset NegComment based on the users’ reviews from the real-world platform of Meituan, upon which our evaluations show that SSENE achieves the best NTE performance compared to the baselines. Our ablation and case studies also demonstrate that incorporating the syntactic information helps the PLM’s recognize the distant dependency between the subject and cue, and the auxiliary task learning is helpful to extract the negation triplets with more semantic consistency. We further demonstrate that SSENE is also competitive on the traditional CDSR task.

2022

pdf bib
Parsing Natural Language into Propositional and First-Order Logic with Dual Reinforcement Learning
Xuantao Lu | Jingping Liu | Zhouhong Gu | Hanwen Tong | Chenhao Xie | Junyang Huang | Yanghua Xiao | Wenguang Wang
Proceedings of the 29th International Conference on Computational Linguistics

Semantic parsing converts natural language utterances into structured logical expressions. We consider two such formal representations: Propositional Logic (PL) and First-order Logic (FOL). The paucity of labeled data is a major challenge in this field. In previous works, dual reinforcement learning has been proposed as an approach to reduce dependence on labeled data. However, this method has the following limitations: 1) The reward needs to be set manually and is not applicable to all kinds of logical expressions. 2) The training process easily collapses when models are trained with only the reward from dual reinforcement learning. In this paper, we propose a scoring model to automatically learn a model-based reward, and an effective training strategy based on curriculum learning is further proposed to stabilize the training process. In addition to the technical contribution, a Chinese-PL/FOL dataset is constructed to compensate for the paucity of labeled data in this field. Experimental results show that the proposed method outperforms competitors on several datasets. Furthermore, by introducing PL/FOL generated by our model, the performance of existing Natural Language Inference (NLI) models is further enhanced.

2021

pdf bib
Revisiting the Negative Data of Distantly Supervised Relation Extraction
Chenhao Xie | Jiaqing Liang | Jingping Liu | Chengsong Huang | Wenhao Huang | Yanghua Xiao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Distantly supervision automatically generates plenty of training samples for relation extraction. However, it also incurs two major problems: noisy labels and imbalanced training data. Previous works focus more on reducing wrongly labeled relations (false positives) while few explore the missing relations that are caused by incompleteness of knowledge base (false negatives). Furthermore, the quantity of negative labels overwhelmingly surpasses the positive ones in previous problem formulations. In this paper, we first provide a thorough analysis of the above challenges caused by negative data. Next, we formulate the problem of relation extraction into as a positive unlabeled learning task to alleviate false negative problem. Thirdly, we propose a pipeline approach, dubbed ReRe, that first performs sentence classification with relational labels and then extracts the subjects/objects. Experimental results show that the proposed method consistently outperforms existing approaches and remains excellent performance even learned with a large quantity of false positive samples. Source code is available online at https://github.com/redreamality/RERE-relation-extraction.