Jingchao Ni


2025

pdf bib
Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery
ChengAo Shen | Zhengzhang Chen | Dongsheng Luo | Dongkuan Xu | Haifeng Chen | Jingchao Ni
Findings of the Association for Computational Linguistics: ACL 2025

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multi-modal data. To bridge the gap, we introduce MatMCD, a multi-agent system powered by tool-augmented LLMs. MatMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery.

2021

pdf bib
Unsupervised Concept Representation Learning for Length-Varying Text Similarity
Xuchao Zhang | Bo Zong | Wei Cheng | Jingchao Ni | Yanchi Liu | Haifeng Chen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Measuring document similarity plays an important role in natural language processing tasks. Most existing document similarity approaches suffer from the information gap caused by context and vocabulary mismatches when comparing varying-length texts. In this paper, we propose an unsupervised concept representation learning approach to address the above issues. Specifically, we propose a novel Concept Generation Network (CGNet) to learn concept representations from the perspective of the entire text corpus. Moreover, a concept-based document matching method is proposed to leverage advances in the recognition of local phrase features and corpus-level concept features. Extensive experiments on real-world data sets demonstrate that new method can achieve a considerable improvement in comparing length-varying texts. In particular, our model achieved 6.5% better F1 Score compared to the best of the baseline models for a concept-project benchmark dataset.