Jing Shi


2025

pdf bib
MAGNET: Augmenting Generative Decoders with Representation Learning and Infilling Capabilities
Savya Khosla | Aditi Tiwari | Kushal Kafle | Simon Jenni | Handong Zhao | John Collomosse | Jing Shi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While originally designed for unidirectional generative modeling, decoder-only large language models (LLMs) are increasingly being adapted for bidirectional modeling. However, unidirectional and bidirectional models are typically trained separately with distinct objectives (generation and representation learning). This separation overlooks the opportunity for developing a more versatile language model and for these objectives to complement each other. In this work, we propose MAGNET, a method for adapting decoder-only LLMs to generate robust representations and infill missing text spans. MAGNET employs three self-supervised training objectives and introduces an attention mechanism that combines bidirectional and causal attention, enabling unified training across all objectives. Our results demonstrate that LLMs adapted with MAGNET (1) surpass strong text encoders on token-level and sentence-level representation learning tasks, (2) generate contextually appropriate text infills by leveraging past and future contexts, (3) perform open-ended text generation without excessive repetition of words or phrases, and (4) preserve the knowledge and reasoning capability gained by the LLM during pretraining.

pdf bib
GUI Agents: A Survey
Dang Nguyen | Jian Chen | Yu Wang | Gang Wu | Namyong Park | Zhengmian Hu | Hanjia Lyu | Junda Wu | Ryan Aponte | Yu Xia | Xintong Li | Jing Shi | Hongjie Chen | Viet Dac Lai | Zhouhang Xie | Sungchul Kim | Ruiyi Zhang | Tong Yu | Mehrab Tanjim | Nesreen K. Ahmed | Puneet Mathur | Seunghyun Yoon | Lina Yao | Branislav Kveton | Jihyung Kil | Thien Huu Nguyen | Trung Bui | Tianyi Zhou | Ryan A. Rossi | Franck Dernoncourt
Findings of the Association for Computational Linguistics: ACL 2025

Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.

2016

pdf bib
Hierarchical Memory Networks for Answer Selection on Unknown Words
Jiaming Xu | Jing Shi | Yiqun Yao | Suncong Zheng | Bo Xu | Bo Xu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Recently, end-to-end memory networks have shown promising results on Question Answering task, which encode the past facts into an explicit memory and perform reasoning ability by making multiple computational steps on the memory. However, memory networks conduct the reasoning on sentence-level memory to output coarse semantic vectors and do not further take any attention mechanism to focus on words, which may lead to the model lose some detail information, especially when the answers are rare or unknown words. In this paper, we propose a novel Hierarchical Memory Networks, dubbed HMN. First, we encode the past facts into sentence-level memory and word-level memory respectively. Then, k-max pooling is exploited following reasoning module on the sentence-level memory to sample the k most relevant sentences to a question and feed these sentences into attention mechanism on the word-level memory to focus the words in the selected sentences. Finally, the prediction is jointly learned over the outputs of the sentence-level reasoning module and the word-level attention mechanism. The experimental results demonstrate that our approach successfully conducts answer selection on unknown words and achieves a better performance than memory networks.

pdf bib
Combining Lexical and Semantic-based Features for Answer Sentence Selection
Jing Shi | Jiaming Xu | Yiqun Yao | Suncong Zheng | Bo Xu
Proceedings of the Open Knowledge Base and Question Answering Workshop (OKBQA 2016)

Question answering is always an attractive and challenging task in natural language processing area. There are some open domain question answering systems, such as IBM Waston, which take the unstructured text data as input, in some ways of humanlike thinking process and a mode of artificial intelligence. At the conference on Natural Language Processing and Chinese Computing (NLPCC) 2016, China Computer Federation hosted a shared task evaluation about Open Domain Question Answering. We achieve the 2nd place at the document-based subtask. In this paper, we present our solution, which consists of feature engineering in lexical and semantic aspects and model training methods. As the result of the evaluation shows, our solution provides a valuable and brief model which could be used in modelling question answering or sentence semantic relevance. We hope our solution would contribute to this vast and significant task with some heuristic thinking.