Jie Yao


2025

pdf bib
P²Net: Parallel Pointer-based Network for Key Information Extraction with Complex Layouts
Kaiwen Wei | Jie Yao | Jiang Zhong | Yangyang Kang | Jingyuan Zhang | Changlong Sun | Xin Zhang | Fengmao Lv | Li Jin
Findings of the Association for Computational Linguistics: ACL 2025

Key Information Extraction (KIE) is a challenging multimodal task aimed at extracting structured value entities from visually rich documents. Despite recent advancements, two major challenges remain. First, existing datasets typically feature fixed layouts and a limited set of entity categories, while current methods are based on a full-shot setting that is difficult to apply in real-world scenarios, where new entity categories frequently emerge. Secondly, current methods often treat key entities simply as parts of the OCR-parsed context, neglecting the positive impact of the relationships between key-value entities. To address the first challenge, we introduce a new large-scale, human-annotated dataset, Complex Layout document for Key Information Extraction (CLEX). Comprising 5,860 images with 1,162 entity categories, CLEX is larger and more complex than existing datasets. It also primarily focuses on the zero-shot and few-shot KIE tasks, which are more aligned with real-world applications. To tackle the second challenge, we propose the Parallel Pointer-based Network (P²Net). This model frames KIE as a pointer-based classification task and effectively leverages implicit relationships between key-value entities to enhance extraction. Its parallel extraction mechanism enables simultaneous and efficient extraction of multiple results. Experiments on widely-used datasets, including SROIE, CORD, and the newly introduced CLEX, demonstrate that P²Net outperforms existing state-of-the-art methods (including GPT-4V) while maintaining fast inference speeds.

2023

pdf bib
Learning by Analogy: Diverse Questions Generation in Math Word Problem
Zihao Zhou | Maizhen Ning | Qiufeng Wang | Jie Yao | Wei Wang | Xiaowei Huang | Kaizhu Huang
Findings of the Association for Computational Linguistics: ACL 2023

Solving math word problem (MWP) with AI techniques has recently made great progress with the success of deep neural networks (DNN), but it is far from being solved. We argue that the ability of learning by analogy is essential for an MWP solver to better understand same problems which may typically be formulated in diverse ways. However most existing works exploit the shortcut learning to train MWP solvers simply based on samples with a single question. In lack of diverse questions, these methods merely learn shallow heuristics. In this paper, we make a first attempt to solve MWPs by generating diverse yet consistent questions/equations. Given a typical MWP including the scenario description, question, and equation (i.e., answer), we first generate multiple consistent equations via a group of heuristic rules. We then feed them to a question generator together with the scenario to obtain the corresponding diverse questions, forming a new MWP with a variety of questions and equations. Finally we engage a data filter to remove those unreasonable MWPs, keeping the high-quality augmented ones. To evaluate the ability of learning by analogy for an MWP solver, we generate a new MWP dataset (called DiverseMath23K) with diverse questions by extending the current benchmark Math23K. Extensive experimental results demonstrate that our proposed method can generate high-quality diverse questions with corresponding equations, further leading to performance improvement on Diverse-Math23K. The code and dataset is available at: https://github.com/zhouzihao501/DiverseMWP.