Jie Feng


2025

pdf bib
Defining and Evaluating Visual Language Models’ Basic Spatial Abilities: A Perspective from Psychometrics
Wenrui Xu | Dalin Lyu | Weihang Wang | Jie Feng | Chen Gao | Yong Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Theory of Multiple Intelligences underscores the hierarchical nature of cognitive capabilities. To advance Spatial Artificial Intelligence, we pioneer a psychometric framework defining five Basic Spatial Abilities (BSAs) in Visual Language Models (VLMs): Spatial Perception, Spatial Relation, Spatial Orientation, Mental Rotation, and Spatial Visualization. Benchmarking 13 mainstream VLMs through nine validated psychometric experiments reveals significant gaps versus humans, with three key findings: 1) VLMs mirror human hierarchies (strongest in 2D orientation, weakest in 3D rotation) with independent BSAs; 2) Many smaller models surpass larger counterparts, with Qwen leading and InternVL2 lagging; 3) Interventions like CoT and few-shot training show limits from architectural constraints, while ToT demonstrates the most effective enhancement. Identified barriers include weak geometry encoding and missing dynamic simulation. By linking Psychometrics to VLMs, we provide a comprehensive BSA evaluation benchmark, a methodological perspective for embodied AI development, and a cognitive science-informed roadmap for achieving human-like spatial intelligence.

pdf bib
Open-Set Living Need Prediction with Large Language Models
Xiaochong Lan | Jie Feng | Yizhou Sun | Chen Gao | Jiahuan Lei | Xinleishi Xinleishi | Hengliang Luo | Yong Li
Findings of the Association for Computational Linguistics: ACL 2025

Living needs are the needs people generate in their daily lives for survival and well-being. On life service platforms like Meituan, user purchases are driven by living needs, making accurate living need predictions crucial for personalized service recommendations. Traditional approaches treat this prediction as a closed-set classification problem, severely limiting their ability to capture the diversity and complexity of living needs. In this work, we redefine living need prediction as an open-set classification problem and propose PIGEON, a novel system leveraging large language models (LLMs) for unrestricted need prediction. PIGEON first employs a behavior-aware record retriever to help LLMs understand user preferences, then incorporates Maslow’s hierarchy of needs to align predictions with human living needs. For evaluation and application, we design a recall module based on a fine-tuned text embedding model that links flexible need descriptions to appropriate life services. Extensive experiments on real-world datasets demonstrate that PIGEON significantly outperforms closed-set approaches on need-based life service recall by an average of 19.37%. Human evaluation validates the reasonableness and specificity of our predictions. Additionally, we employ instruction tuning to enable smaller LLMs to achieve competitive performance, supporting practical deployment.

pdf bib
AgentMove: A Large Language Model based Agentic Framework for Zero-shot Next Location Prediction
Jie Feng | Yuwei Du | Jie Zhao | Yong Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Next location prediction plays a crucial role in various real-world applications. Recently, due to the limitation of existing deep learning methods, attempts have been made to apply large language models (LLMs) to zero-shot next location prediction task. However, they directly generate the final output using LLMs without systematic design, which limits the potential of LLMs to uncover complex mobility patterns and underestimates their extensive reserve of global geospatial knowledge. In this paper, we introduce AgentMove, a systematic agentic prediction framework to achieve generalized next location prediction. In AgentMove, we first decompose the mobility prediction task and design specific modules to complete them, including spatial-temporal memory for individual mobility pattern mining, world knowledge generator for modeling the effects of urban structure and collective knowledge extractor for capturing the shared patterns among population. Finally, we combine the results of three modules and conduct a reasoning step to generate the final predictions. Extensive experiments utilizing mobility data from two distinct sources reveal that AgentMove surpasses the leading baseline by 3.33% to 8.57% across 8 out of 12 metrics and it shows robust predictions with various LLMs as base and also less geographical bias across cities. Our codes are available via https://github.com/tsinghua-fib-lab/AgentMove.