Efficiently updating multilingual knowledge in large language models (LLMs) without disrupting coherent factual representations across languages remains a significant challenge. While deploying separate editing systems for each language might seem viable, this approach incurs substantial costs due to the need to manage multiple models. A more efficient solution involves integrating knowledge updates across all languages into a unified model. However, sequential edits across languages often lead to destructive parameter interference, significantly degrading multilingual generalization and the accuracy of injected knowledge. To address this issue, we propose LangEdit, a novel null-space constrained framework designed to precisely isolate language-specific knowledge updates. The core innovation of LangEdit lies in its ability to project parameter updates for each language onto the orthogonal complement of other languages’ subspaces. This approach mathematically guarantees update independence while preserving multilingual generalization capabilities. We conduct a comprehensive evaluation across three model architectures, six languages, and four downstream tasks, demonstrating that LangEdit effectively mitigates parameter interference and outperforms existing state-of-the-art editing methods. Our results highlight its potential for enabling efficient and accurate multilingual knowledge updates in LLMs.
Argument structure learning (ASL) entails predicting relations between arguments. Because it can structure a document to facilitate its understanding, it has been widely applied in many fields (medical, commercial, and scientific domains). Despite its broad utilization, ASL remains a challenging task because it involves examining the complex relationships between the sentences in a potentially unstructured discourse. To resolve this problem, we have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network (DMON) for the ASL task. Specifically, we organize arguments into a relationship matrix that together with the argument embeddings forms a relationship tensor and design a mechanism to capture relations with contextual arguments. Experimental results on three different-domain argument mining datasets demonstrate that our framework outperforms state-of-the-art models. We will release the code after paper acceptance.
While solving math word problems automatically has received considerable attention in the NLP community, few works have addressed probability word problems specifically. In this paper, we employ and analyse various neural models for answering such word problems. In a two-step approach, the problem text is first mapped to a formal representation in a declarative language using a sequence-to-sequence model, and then the resulting representation is executed using a probabilistic programming system to provide the answer. Our best performing model incorporates general-domain contextualised word representations that were finetuned using transfer learning on another in-domain dataset. We also apply end-to-end models to this task, which bring out the importance of the two-step approach in obtaining correct solutions to probability problems.