Hitesh Laxmichand Patel


2025

pdf bib
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Samuel Cahyawijaya | Holy Lovenia | Joel Ruben Antony Moniz | Tack Hwa Wong | Mohammad Rifqi Farhansyah | Thant Thiri Maung | Frederikus Hudi | David Anugraha | Muhammad Ravi Shulthan Habibi | Muhammad Reza Qorib | Amit Agarwal | Joseph Marvin Imperial | Hitesh Laxmichand Patel | Vicky Feliren | Bahrul Ilmi Nasution | Manuel Antonio Rufino | Genta Indra Winata | Rian Adam Rajagede | Carlos Rafael Catalan | Mohamed Fazli Mohamed Imam | Priyaranjan Pattnayak | Salsabila Zahirah Pranida | Kevin Pratama | Yeshil Bangera | Adisai Na-Thalang | Patricia Nicole Monderin | Yueqi Song | Christian Simon | Lynnette Hui Xian Ng | Richardy Lobo Sapan | Taki Hasan Rafi | Bin Wang | Supryadi | Kanyakorn Veerakanjana | Piyalitt Ittichaiwong | Matthew Theodore Roque | Karissa Vincentio | Takdanai Kreangphet | Phakphum Artkaew | Kadek Hendrawan Palgunadi | Yanzhi Yu | Rochana Prih Hastuti | William Nixon | Mithil Bangera | Adrian Xuan Wei Lim | Aye Hninn Khine | Hanif Muhammad Zhafran | Teddy Ferdinan | Audra Aurora Izzani | Ayushman Singh | Evan Evan | Jauza Akbar Krito | Michael Anugraha | Fenal Ashokbhai Ilasariya | Haochen Li | John Amadeo Daniswara | Filbert Aurelian Tjiaranata | Eryawan Presma Yulianrifat | Can Udomcharoenchaikit | Fadil Risdian Ansori | Mahardika Krisna Ihsani | Giang Nguyen | Anab Maulana Barik | Dan John Velasco | Rifo Ahmad Genadi | Saptarshi Saha | Chengwei Wei | Isaiah Edri W. Flores | Kenneth Chen Ko Han | Anjela Gail D. Santos | Wan Shen Lim | Kaung Si Phyo | Tim Santos | Meisyarah Dwiastuti | Jiayun Luo | Jan Christian Blaise Cruz | Ming Shan Hee | Ikhlasul Akmal Hanif | M.Alif Al Hakim | Muhammad Rizky Sya’ban | Kun Kerdthaisong | Lester James Validad Miranda | Fajri Koto | Tirana Noor Fatyanosa | Alham Fikri Aji | Jostin Jerico Rosal | Jun Kevin | Robert Wijaya | Onno P. Kampman | Ruochen Zhang | Börje F. Karlsson | Peerat Limkonchotiwat
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite Southeast Asia’s (SEA) extraordinary linguistic and cultural diversity, the region remains significantly underrepresented in vision-language (VL) research, resulting in AI models that inadequately capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing culturally relevant high-quality datasets for SEA languages. By involving contributors from SEA countries, SEA-VL ensures better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages and cultural depictions in VL research. Our methodology employed three approaches: community-driven crowdsourcing with SEA contributors, automated image crawling, and synthetic image generation. We evaluated each method’s effectiveness in capturing cultural relevance. We found that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing, whereas synthetic image generation failed to accurately reflect SEA cultural nuances and contexts. Collectively, we gathered 1.28 million SEA culturally relevant images, more than 50 times larger than other existing datasets. This work bridges the representation gap in SEA, establishes a foundation for developing culturally aware AI systems for this region, and provides a replicable framework for addressing representation gaps in other underrepresented regions.

pdf bib
SpeechWeave: Diverse Multilingual Synthetic Text & Audio Data Generation Pipeline for Training Text to Speech Models
Karan Dua | Puneet Mittal | Ranjeet Gupta | Hitesh Laxmichand Patel
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

High-quality Text-to-Speech (TTS) model training requires extensive and diverse text and speech data. It is challenging to procure such data from real sources due to issues of domain specificity, licensing, and scalability. Large language models (LLMs) can certainly generate textual data, but they create repetitive text with insufficient variation in the prompt during the generation process. Another important aspect in TTS training data is text normalization. Tools for normalization might occasionally introduce anomalies or overlook valuable patterns, and thus impact data quality. Furthermore, it is also impractical to rely on voice artists for large scale speech recording in commercial TTS systems with standardized voices. To address these challenges, we propose SpeechWeave, a synthetic speech data generation pipeline that is capable of automating the generation of multilingual, domain-specific datasets for training TTS models. Our experiments reveal that our pipeline generates data that is 10–48% more diverse than the baseline across various linguistic and phonetic metrics, along with speaker-standardized speech audio while generating approximately 97% correctly normalized text. Our approach enables scalable, high-quality data generation for TTS training, improving diversity, normalization, and voice consistency in the generated datasets.

pdf bib
Hard Negative Mining for Domain-Specific Retrieval in Enterprise Systems
Hansa Meghwani | Amit Agarwal | Priyaranjan Pattnayak | Hitesh Laxmichand Patel | Srikant Panda
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Enterprise search systems often struggle to retrieve accurate, domain-specific information due to semantic mismatches and overlapping terminologies. These issues can degrade the performance of downstream applications such as knowledge management, customer support, and retrieval-augmented generation agents. To address this challenge, we propose a scalable hard-negative mining framework tailored specifically for domain-specific enterprise data. Our approach dynamically selects semantically challenging but contextually irrelevant documents to enhance deployed re-ranking models.Our method integrates diverse embedding models, performs dimensionality reduction, and uniquely selects hard negatives, ensuring computational efficiency and semantic precision. Evaluation on our proprietary enterprise corpus (cloud services domain) demonstrates substantial improvements of 15% in MRR@3 and 19% in MRR@10 compared to state-of-the-art baselines and other negative sampling techniques. Further validation on public domain-specific datasets (FiQA, Climate Fever, TechQA) confirms our method’s generalizability and readiness for real-world applications.

pdf bib
MVTamperBench: Evaluating Robustness of Vision-Language Models
Amit Agarwal | Srikant Panda | Angeline Charles | Hitesh Laxmichand Patel | Bhargava Kumar | Priyaranjan Pattnayak | Taki Hasan Rafi | Tejaswini Kumar | Hansa Meghwani | Karan Gupta | Dong-Kyu Chae
Findings of the Association for Computational Linguistics: ACL 2025

Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce MVTamperBench, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding.

pdf bib
Hybrid AI for Responsive Multi-Turn Online Conversations with Novel Dynamic Routing and Feedback Adaptation
Priyaranjan Pattnayak | Amit Agarwal | Hansa Meghwani | Hitesh Laxmichand Patel | Srikant Panda
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing

Retrieval-Augmented Generation (RAG) systems and large language model (LLM)-powered chatbots have significantly advanced conversational AI by combining generative capabilities with external knowledge retrieval. Despite their success, enterprise-scale deployments face critical challenges, including diverse user queries, high latency, hallucinations, and difficulty integrating frequently updated domain-specific knowledge. This paper introduces a novel hybrid framework that integrates RAG with intent-based canned responses, leveraging predefined high-confidence responses for efficiency while dynamically routing complex or ambiguous queries to the RAG pipeline. Our framework employs a dialogue context manager to ensure coherence in multi-turn interactions and incorporates a feedback loop to refine intents, dynamically adjust confidence thresholds, and expand response coverage over time. Experimental results demonstrate that the proposed framework achieves a balance of high accuracy (95%) and low latency (180ms), outperforming RAG and intent-based systems across diverse query types, positioning it as a scalable and adaptive solution for enterprise conversational AI applications.

pdf bib
SweEval: Do LLMs Really Swear? A Safety Benchmark for Testing Limits for Enterprise Use
Hitesh Laxmichand Patel | Amit Agarwal | Arion Das | Bhargava Kumar | Srikant Panda | Priyaranjan Pattnayak | Taki Hasan Rafi | Tejaswini Kumar | Dong-Kyu Chae
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.
Search
Co-authors
Fix author