2025
pdf
bib
abs
ACECODER: Acing Coder RL via Automated Test-Case Synthesis
Huaye Zeng
|
Dongfu Jiang
|
Haozhe Wang
|
Ping Nie
|
Xiaotong Chen
|
Wenhu Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Most progress in recent coder models has been driven by supervised fine-tuning (SFT), while the potential of reinforcement learning (RL) remains largely unexplored, primarily due to the lack of reliable reward data/model in the code domain. In this paper, we address this challenge by leveraging automated large-scale test-case synthesis to enhance code model training. Specifically, we design a pipeline that generates extensive (question, test-cases) pairs from existing code data. Using these test cases, we construct preference pairs based on pass rates over sampled programs to train reward models with Bradley-Terry loss. It shows an average of 10-point improvement for Llama-3.1-8B-Ins and 5-point improvement for Qwen2.5-Coder-7B-Ins through best-of-32 sampling, making the 7B model on par with 236B DeepSeek-V2.5. Furthermore, we conduct reinforcement learning with both reward models and test-case pass rewards, leading to consistent improvements across HumanEval, MBPP, BigCodeBench, and LiveCodeBench (V4). Notably, we follow the R1-style training to start from Qwen2.5-Coder-base directly and show that our RL training can improve model on HumanEval-plus by over 25% and MBPP-plus by 6% for merely 80 optimization steps. We believe our results highlight the huge potential of reinforcement learning in coder models.
pdf
bib
abs
To Code or not to Code? Adaptive Tool Integration for Math Language Models via Expectation-Maximization
Haozhe Wang
|
Long Li
|
Chao Qu
|
Weidi Xu
|
Fengming Zhu
|
Wei Chu
|
Fangzhen Lin
Findings of the Association for Computational Linguistics: ACL 2025
Recent advances in mathematical problem-solving with language models (LMs) integrate chain-of-thought (CoT) reasoning and code execution to harness their complementary strengths. However, existing hybrid frameworks exhibit a critical limitation: they depend on externally dictated instructions or rigid code-integration templates, lacking metacognitive awareness—the capacity to dynamically evaluate intrinsic capabilities and autonomously determine when and how to integrate tools. This rigidity motivates our study of autonomous code integration, enabling models to adapt tool-usage strategies as their reasoning abilities evolve during training.While reinforcement learning (RL) shows promise for boosting LLM reasoning at scale (e.g., DeepSeek-R1), we demonstrate its inefficiency in learning autonomous code integration due to inadequate exploration of the vast combinatorial space of CoT-code interleaving patterns. To address this challenge, we propose a novel Expectation-Maximization (EM) framework that synergizes structured exploration (E-step) with off-policy RL optimization (M-step), creating a self-reinforcing cycle between metacognitive tool-use decisions and evolving capabilities. Experiments reveal our method achieves superior results through improved exploration. Notably, our 7B model improves over 11% on MATH500 and 9.4% on AIME without o1-like CoT.
pdf
bib
abs
Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data?
Che Liu
|
Zhongwei Wan
|
Haozhe Wang
|
Yinda Chen
|
Talha Qaiser
|
Chen Jin
|
Nikolay Burlutskiy
|
Fariba Yousefi
|
Rossella Arcucci
Findings of the Association for Computational Linguistics: ACL 2025
Medical Vision-Language Pre-training (MedVLP) has made significant progress in enabling zero-shot tasks for medical image understanding. However, training MedVLP models typically requires large-scale datasets with paired, high-quality image-text data, which are scarce in the medical domain. Recent advancements in Large Language Models (LLMs) and diffusion models have made it possible to generate large-scale synthetic image-text pairs. This raises the question: Can MedVLP succeed using purely synthetic data? To address this, we use off-the-shelf generative models to create synthetic radiology reports and paired Chest X-ray (CXR) images, and propose an automated pipeline to build a diverse, high-quality synthetic dataset, enabling a rigorous study that isolates model and training settings, focusing entirely from the data perspective.Our results show that MedVLP models trained exclusively on synthetic data outperform those trained on real data by 3.8% in averaged AUC on zero-shot classification. Moreover, using a combination of synthetic and real data leads to a further improvement of 9.07%. Additionally, MedVLP models trained on synthetic or mixed data consistently outperform those trained on real data in zero-shot grounding, as well as in fine-tuned classification and segmentation tasks.Our analysis suggests MedVLP trained on well-designed synthetic data can outperform models trained on real datasets, which may be limited by low-quality samples and long-tailed distributions[^1].[^1]: All data and code will be released upon acceptance.
pdf
bib
abs
Argus: Benchmarking and Enhancing Vision-Language Models for 3D Radiology Report Generation
Che Liu
|
Zhongwei Wan
|
Yuqi Wang
|
Hui Shen
|
Haozhe Wang
|
Kangyu Zheng
|
Mi Zhang
|
Rossella Arcucci
Findings of the Association for Computational Linguistics: ACL 2025
Automatic radiology report generation holds significant potential to streamline the labor-intensive process of report writing by radiologists, particularly for 3D radiographs such as CT scans. While CT scans are critical for clinical diagnostics, they remain less explored compared to 2D radiographs. To date, there has been no comprehensive benchmark for 3D radiograph report generation (3DRRG), nor sufficient investigation into the optimal training strategies for Vision Language Models (VLMs) in this context, particularly with respect to vision encoder choices, visual token compression, and model scaling.In this work, we make two three contributions. We curate CT-3DRRG, the largest publicly available 3D CT-report dataset, establishing a robust and diverse benchmark for evaluating VLM performance on 3DRRG. Furthermore, we propose a comprehensive training recipe for building high-performing VLMs for 3DRRG, exploring key factors such as vision encoder pretraining strategies, visual token compression, and the impact of data & model scale. Guided by these findings, we introduce Argus, a state-of-the-art family of VLMs that achieve superior performance across different model sizes and input 3D medical image resolutions, efficiently processing high-resolution 3D images up to 512 × 512 × 256.
2024
pdf
bib
abs
How Do Humans Write Code? Large Models Do It the Same Way Too
Long Li
|
Xuzheng He
|
Haozhe Wang
|
Linlin Wang
|
Liang He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Program-of-Thought (PoT) replaces natural language-based Chain-of-Thought (CoT) as the most popular method in Large Language Models (LLMs) mathematical reasoning tasks by utilizing external tool calls to circumvent computational errors. However, our evaluation of the GPT-4 and Llama series reveals that using PoT introduces more reasoning errors, such as incorrect formulas or flawed logic, compared to CoT. To address this issue, we propose Human-Think Language (HTL), which leverages a suite of strategies that help integrate PoT and CoT, encompassing: (1) a new generation paradigm that uses full CoT reasoning to control code generation. (2) Focus Attention, that directs model attention to the CoT reasoning during PoT to generate more logical code. (3) reinforcement learning that utilizes the accuracy of both CoT and PoT responses as rewards to prevent repetitive reasoning steps in LLMs when solving difficult math problems. Our method achieves an average improvement of 6.5% on the Llama-Base model and 4.3% on the Mistral-Base model across 8 mathematical calculation datasets. It also shows significant effectiveness on five out-of-domain datasets by controlling the model’s information flow, exhibiting strong transferability. Additionally, HTL shows the most significant improvement in non-mathematical natural language inference task, contributing to a unified reasoning task framework.