Haipeng Zhang


2025

pdf bib
Principled Understanding of Generalization for Generative Transformer Models in Arithmetic Reasoning Tasks
Xingcheng Xu | Zibo Zhao | Haipeng Zhang | Yanqing Yang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transformer-based models excel in various tasks but their generalization capabilities, especially in arithmetic reasoning, remain incompletely understood. Arithmetic tasks provide a controlled framework to explore these capabilities, yet performance anomalies persist, such as inconsistent effectiveness in multiplication and erratic generalization in modular addition (e.g., modulo 100 vs. 101). This paper develops a unified theoretical framework for understanding the generalization behaviors of transformers in arithmetic tasks, focusing on length generalization. Through detailed analysis of addition, multiplication, and modular operations, we reveal that translation invariance in addition aligns with relative positional encoding for robust generalization, while base mismatch in modular operations disrupts this alignment. Experiments across GPT-family models validate our framework, confirming its ability to predict generalization behaviors. Our work highlights the importance of task structure and training data distribution for achieving data-efficient and structure-aware training, providing a systematic approach to understanding of length generalization in transformers.

2023

pdf bib
ZeroAE: Pre-trained Language Model based Autoencoder for Transductive Zero-shot Text Classification
Kaihao Guo | Hang Yu | Cong Liao | Jianguo Li | Haipeng Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Many text classification tasks require handling unseen domains with plenty of unlabeled data, thus giving rise to the self-adaption or the so-called transductive zero-shot learning (TZSL) problem. However, current methods based solely on encoders or decoders overlook the possibility that these two modules may promote each other. As a first effort to bridge this gap, we propose an autoencoder named ZeroAE. Specifically, the text is encoded with two separate BERT-based encoders into two disentangled spaces, i.e., label-relevant (for classification) and label-irrelevant respectively. The two latent spaces are then decoded by prompting GPT-2 to recover the text as well as to further generate text with labels in the unseen domains to train the encoder in turn. To better exploit the unlabeled data, a novel indirect uncertainty-aware sampling (IUAS) approach is proposed to train ZeroAE. Extensive experiments show that ZeroAE largely surpasses the SOTA methods by 15.93% and 8.70% on average respectively in the label-partially-unseen and label-fully-unseen scenario. Notably, the label-fully-unseen ZeroAE even possesses superior performance to the label-partially-unseen SOTA methods.