2025
pdf
bib
abs
CMHKF: Cross-Modality Heterogeneous Knowledge Fusion for Weakly Supervised Video Anomaly Detection
Guohua Wang
|
Shengping Song
|
Wuchun He
|
Yongsen Zheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Weakly supervised video anomaly detection (WSVAD) presents a challenging task focused on detecting frame-level anomalies using only video-level labels. However, existing methods focus mainly on visual modalities, neglecting rich multi-modality information. This paper proposes a novel framework, Cross-Modality Heterogeneous Knowledge Fusion (CMHKF), that integrates cross-modality knowledge from video, audio, and text to improve anomaly detection and localization. To achieve adaptive cross-modality heterogeneous knowledge learning, we designed two components: Cross-Modality Video-Text Knowledge Alignment (CVKA) and Audio Modality Feature Adaptive Extraction (AFAE). They extract and aggregate features by exploring inter-modality correlations. By leveraging abundant cross-modality knowledge, our approach improves the discrimination between normal and anomalous segments. Extensive experiments on XD-Violence show our method significantly enhances accuracy and robustness in both coarse-grained and fine-grained anomaly detection.
pdf
bib
abs
RTADev: Intention Aligned Multi-Agent Framework for Software Development
Jie Liu
|
Guohua Wang
|
Ronghui Yang
|
Jiajie Zeng
|
Mengchen Zhao
|
Yi Cai
Findings of the Association for Computational Linguistics: ACL 2025
LLM-based Multi-agent frameworks have shown a great potential in solving real-world software development tasks, where the agents of different roles can communicate much more efficiently than humans. Despite their efficiency, LLM-based agents can hardly fully understand each other, which frequently causes errors during the development process. Moreover, the accumulation of errors could easily lead to the failure of the whole project. In order to reduce such errors, we introduce an intention aligned multi-agent framework RTADev, which utilizes a self-correction mechanism to ensure that all agents work based on a consensus. RTADev mimics human teams where individuals are free to start meetings anytime for reaching agreement. Specifically, RTADev integrates an alignment checking phase and a conditional ad hoc group review phase, so that the errors can be effectively reduced with minimum agent communications. Our experiments on various software development tasks show that RTADev significantly improves the quality of generated software code in terms of executability, structural and functional completeness. The code of our project is available at https://github.com/codeagent-rl/RTADev.
pdf
bib
abs
HyperCRS: Hypergraph-Aware Multi-Grained Preference Learning to Burst Filter Bubbles in Conversational Recommendation System
Yongsen Zheng
|
Mingjie Qian
|
Guohua Wang
|
Yang Liu
|
Ziliang Chen
|
Mingzhi Mao
|
Liang Lin
|
Kwok-Yan Lam
Findings of the Association for Computational Linguistics: ACL 2025
The filter bubble is a notorious issue in Recommender Systems (RSs), characterized by users being confined to a limited corpus of information or content that strengthens and amplifies their pre-established preferences and beliefs. Most existing methods primarily aim to analyze filter bubbles in the relatively static recommendation environment. Nevertheless, the filter bubble phenomenon continues to exacerbate as users interact with the system over time. To address these issues, we propose a novel paradigm, Hypergraph-Aware Multi-Grained Preference Learning to Burst Filter Bubbles in Conversational Recommendation System (HyperCRS), aiming to burst filter bubbles by learning multi-grained user preferences during the dynamic user-system interactions via natural language conversations. HyperCRS develops Multi-Grained Hypergraph (user-, item-, and attribute-grained) to explore diverse relations and capture high-order connectivity. It employs Hypergraph-Empowered Policy Learning, which includes Multi-Grained Preference Modeling to model user preferences and Preference-based Decision Making to disrupt filter bubbles during user interactions. Extensive results on four publicly CRS-based datasets show that HyperCRS achieves new state-of-the-art performance, and the superior of bursting filter bubbles in the CRS.
pdf
bib
abs
Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Yongsen Zheng
|
Zongxuan Xie
|
Guohua Wang
|
Ziyao Liu
|
Liang Lin
|
Kwok-Yan Lam
Findings of the Association for Computational Linguistics: ACL 2025
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness.
2024
pdf
bib
abs
HyCoRec: Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation
Yongsen Zheng
|
Ruilin Xu
|
Ziliang Chen
|
Guohua Wang
|
Mingjie Qian
|
Jinghui Qin
|
Liang Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The Matthew effect is a notorious issue in Recommender Systems (RSs), i.e., the rich get richer and the poor get poorer, wherein popular items are overexposed while less popular ones are regularly ignored. Most methods examine Matthew effect in static or nearly-static recommendation scenarios. However, the Matthew effect will be increasingly amplified when the user interacts with the system over time. To address these issues, we propose a novel paradigm, Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation (HyCoRec), which aims to alleviate the Matthew effect in conversational recommendation. Concretely, HyCoRec devotes to alleviate the Matthew effect by learning multi-aspect preferences, i.e., item-, entity-, word-, review-, and knowledge-aspect preferences, to effectively generate responses in the conversational task and accurately predict items in the recommendation task when the user chats with the system over time. Extensive experiments conducted on two benchmarks validate that HyCoRec achieves new state-of-the-art performance and the superior of alleviating Matthew effect.
pdf
bib
abs
Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation
Yongsen Zheng
|
Ruilin Xu
|
Guohua Wang
|
Liang Lin
|
Kwok-Yan Lam
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.
pdf
bib
abs
Knowledge-Guided Cross-Topic Visual Question Generation
Hongfei Liu
|
Guohua Wang
|
Jiayuan Xie
|
Jiali Chen
|
Wenhao Fang
|
Yi Cai
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Visual question generation (VQG) task aims to generate high-quality questions based on the input image. Current methods primarily focus on generating questions containing specified content utilizing answers or question types as constraints. However, these constraints make it challenging to control the topic of generated questions (e.g., conversation or test subject topics) for various applications. Thus, it is necessary to utilize topics as constraints to guide question generation. Considering that there are many topics and it is almost impossible for human annotations to cover them, we propose the cross-topic learning VQG (CTL-VQG) task, which aims to generate questions related to unseen topics in cross-topic scenarios. In this paper, we propose a knowledge-guided cross-topic visual question generation (KC-VQG) model to extract unseen topic-related information for question generation. Specifically, an image-topic feature extractor is introduced in our model to extract topic-related intuitive visual features; an image-topic knowledge extractor is used to extract and select the most appropriate topic-related implicit knowledge from large language models for generating questions. Extensive experiments show that our model outperforms baselines and can effectively generate unseen topic-related questions in cross-topic scenarios.
2020
pdf
bib
abs
A Two-phase Prototypical Network Model for Incremental Few-shot Relation Classification
Haopeng Ren
|
Yi Cai
|
Xiaofeng Chen
|
Guohua Wang
|
Qing Li
Proceedings of the 28th International Conference on Computational Linguistics
Relation Classification (RC) plays an important role in natural language processing (NLP). Current conventional supervised and distantly supervised RC models always make a closed-world assumption which ignores the emergence of novel relations in open environment. To incrementally recognize the novel relations, current two solutions (i.e, re-training and lifelong learning) are designed but suffer from the lack of large-scale labeled data for novel relations. Meanwhile, prototypical network enjoys better performance on both fields of deep supervised learning and few-shot learning. However, it still suffers from the incompatible feature embedding problem when the novel relations come in. Motivated by them, we propose a two-phase prototypical network with prototype attention alignment and triplet loss to dynamically recognize the novel relations with a few support instances meanwhile without catastrophic forgetting. Extensive experiments are conducted to evaluate the effectiveness of our proposed model.