Geyu Lin


2025

pdf bib
MERaLiON-AudioLLM: Advancing Speech and Language Understanding for Singapore
Yingxu He | Zhuohan Liu | Geyu Lin | Shuo Sun | Bin Wang | Wenyu Zhang | Xunlong Zou | Nancy F. Chen | AiTi Aw
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We introduce MERaLiON-AudioLLM, the first general-purpose audio-based large language model designed for multitask learning, with a particular focus on Singlish understanding. Trained on 62 million multimodal instruction samples comprising a total of 260k hours of audio, it exhibits strong generalization across a diverse set of tasks, including—but not limited to—automatic speech recognition, spoken question answering, speech translation, and paralinguistic analysis. Our results show significant improvements in local speech recognition and task-specific understanding, making MERaLiON-AudioLLM a leading solution for region-specific AI applications. An interactive demo has been developed to enable user-friendly interactions, supported by a backend with customized caching and load-balancing mechanisms. We benchmark the model across a broad range of multilingual and multitask scenarios, where it demonstrates competitive performance compared to other open-source models. The demo page, model weights and videos are publically accessible.

pdf bib
SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning
Zhengyuan Liu | Geyu Lin | Hui Li Tan | Huayun Zhang | Yanfeng Lu | Xiaoxue Gao | Stella Xin Yin | Sun He | Hock Huan Goh | Lung Hsiang Wong | Nancy F. Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes.In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels.

pdf bib
AudioBench: A Universal Benchmark for Audio Large Language Models
Bin Wang | Xunlong Zou | Geyu Lin | Shuo Sun | Zhuohan Liu | Wenyu Zhang | Zhengyuan Liu | AiTi Aw | Nancy F. Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We introduce AudioBench, a universal benchmark designed to evaluate Audio Large Language Models (AudioLLMs). It encompasses 8 distinct tasks and 26 datasets, among which, 7 are newly proposed datasets. The evaluation targets three main aspects: speech understanding, audio scene understanding, and voice understanding (paralinguistic). Despite recent advancements, there lacks a comprehensive benchmark for AudioLLMs on instruction following capabilities conditioned on audio signals. AudioBench addresses this gap by setting up datasets as well as desired evaluation metrics. Besides, we also evaluated the capabilities of five popular models and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-sourced evaluation toolkit, data, and leaderboard will offer a robust testbed for future model developments.

pdf bib
CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment
Geyu Lin | Bin Wang | Zhengyuan Liu | Nancy F. Chen
Proceedings of the Second Workshop on Scaling Up Multilingual & Multi-Cultural Evaluation

Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model’s task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.

2024

pdf bib
CRAFT: Extracting and Tuning Cultural Instructions from the Wild
Bin Wang | Geyu Lin | Zhengyuan Liu | Chengwei Wei | Nancy Chen
Proceedings of the 2nd Workshop on Cross-Cultural Considerations in NLP

Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models’ cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.

pdf bib
Personality-aware Student Simulation for Conversational Intelligent Tutoring Systems
Zhengyuan Liu | Stella Xin Yin | Geyu Lin | Nancy F. Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student’s persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher’s adaptive scaffolding strategies.

pdf bib
Resilience of Large Language Models for Noisy Instructions
Bin Wang | Chengwei Wei | Zhengyuan Liu | Geyu Lin | Nancy F. Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

As the rapidly advancing domain of natural language processing (NLP), large language models (LLMs) have emerged as powerful tools for interpreting human commands and generating text across various tasks. Nonetheless, the resilience of LLMs to handle text containing inherent errors, stemming from human interactions and collaborative systems, has not been thoroughly explored. Our study investigates the resilience of LLMs against five common types of disruptions including 1) ASR (Automatic Speech Recognition) errors, 2) OCR (Optical Character Recognition) errors, 3) grammatical mistakes, 4) typographical errors, and 5) distractive content. We aim to investigate how these models react by deliberately embedding these errors into instructions. Our findings reveal that while some LLMs show a degree of resistance to certain types of noise, their overall performance significantly suffers. This emphasizes the importance of further investigation into enhancing model resilience. In response to the observed decline in performance, our study also evaluates a “re-pass” strategy, designed to purify the instructions of noise before the LLMs process them. Our analysis indicates that correcting noisy instructions, particularly for open-source LLMs, presents significant challenges.