Geunyeong Jeong


2025

pdf bib
Exploring the Impact of Instruction-Tuning on LLM’s Susceptibility to Misinformation
Kyubeen Han | Junseo Jang | Hongjin Kim | Geunyeong Jeong | Harksoo Kim
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Instruction-tuning enhances the ability of large language models (LLMs) to follow user instructions more accurately, improving usability while reducing harmful outputs. However, this process may increase the model’s dependence on user input, potentially leading to the unfiltered acceptance of misinformation and the generation of hallucinations. Existing studies primarily highlight that LLMs are receptive to external information that contradict their parametric knowledge, but little research has been conducted on the direct impact of instruction-tuning on this phenomenon. In our study, we investigate the impact of instruction-tuning on LLM susceptibility to misinformation. Our analysis reveals that instruction-tuned LLMs are significantly more likely to accept misinformation when it is presented by the user. A comparison with base models shows that instruction-tuning increases reliance on user-provided information, shifting susceptibility from the assistant role to the user role. Furthermore, we explore additional factors influencing misinformation susceptibility, such as the role of the user in prompt structure, misinformation length, and the presence of warnings in the system prompt. Our findings underscore the need for systematic approaches to mitigate unintended consequences of instruction-tuning and enhance the reliability of LLMs in real-world applications.

2024

pdf bib
Bridging the Code Gap: A Joint Learning Framework across Medical Coding Systems
Geunyeong Jeong | Seokwon Jeong | Juoh Sun | Harksoo Kim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Automated Medical Coding (AMC) is the task of automatically converting free-text medical documents into predefined codes according to a specific medical coding system. Although deep learning has significantly advanced AMC, the class imbalance problem remains a significant challenge. To address this issue, most existing methods consider only a single coding system and disregard the potential benefits of reflecting the relevance between different coding systems. To bridge this gap, we introduce a Joint learning framework for Across Medical coding Systems (JAMS), which jointly learns different coding systems through multi-task learning. It learns various representations using a shared encoder and explicitly captures the relationships across these coding systems using the medical code attention network, a modification of the graph attention network. In the experiments on the MIMIC-IV ICD-9 and MIMIC-IV ICD-10 datasets, connected through General Equivalence Mappings, JAMS improved the performance consistently regardless of the backbone models. This result demonstrates its model-agnostic characteristic, which is not constrained by specific model structures. Notably, JAMS significantly improved the performance of low-frequency codes. Our analysis shows that these performance gains are due to the connections between the codes of the different coding systems.

2023

pdf bib
Improving Automatic KCD Coding: Introducing the KoDAK and an Optimized Tokenization Method for Korean Clinical Documents
Geunyeong Jeong | Juoh Sun | Seokwon Jeong | Hyunjin Shin | Harksoo Kim
Proceedings of the 5th Clinical Natural Language Processing Workshop

International Classification of Diseases (ICD) coding is the task of assigning a patient’s electronic health records into standardized codes, which is crucial for enhancing medical services and reducing healthcare costs. In Korea, automatic Korean Standard Classification of Diseases (KCD) coding has been hindered by limited resources, differences in ICD systems, and language-specific characteristics. Therefore, we construct the Korean Dataset for Automatic KCD coding (KoDAK) by collecting and preprocessing Korean clinical documents. In addition, we propose a tokenization method optimized for Korean clinical documents. Our experiments show that our proposed method outperforms Korean Medical BERT (KM-BERT) in Macro-F1 performance by 0.14%p while using fewer model parameters, demonstrating its effectiveness in Korean clinical documents.