Ge Chen


2025

pdf bib
Towards Reward Fairness in RLHF: From a Resource Allocation Perspective
Sheng Ouyang | Yulan Hu | Ge Chen | Qingyang Li | Fuzheng Zhang | Yong Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Rewards serve as proxies for human preferences and play a crucial role in Reinforcement Learning from Human Feedback (RLHF). However, if these rewards are inherently imperfect, exhibiting various biases, they can adversely affect the alignment of large language models (LLMs). In this paper, we collectively define the various biases present in rewards as the problem of reward unfairness. We propose a bias-agnostic method to address the issue of reward fairness from a resource allocation perspective, without specifically designing for each type of bias, yet effectively mitigating them. Specifically, we model preference learning as a resource allocation problem, treating rewards as resources to be allocated while considering the trade-off between utility and fairness in their distribution. We propose two methods, Fairness Regularization and Fairness Coefficient, to achieve fairness in rewards. We apply our methods in both verification and reinforcement learning scenarios to obtain a fairness reward model and a policy model, respectively. Experiments conducted in these scenarios demonstrate that our approach aligns LLMs with human preferences in a more fair manner. Our data and code are available athttps://github.com/shoyua/Towards-Reward-Fairness.

2024

pdf bib
When Generative Adversarial Networks Meet Sequence Labeling Challenges
Yu Tong | Ge Chen | Guokai Zheng | Rui Li | Jiang Dazhi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The current framework for sequence labeling encompasses a feature extractor and a sequence tagger. This study introduces a unified framework named SLGAN, which harnesses the capabilities of Generative Adversarial Networks to address the challenges associated with Sequence Labeling tasks. SLGAN not only mitigates the limitation of GANs in backpropagating loss to discrete data but also exhibits strong adaptability to various sequence labeling tasks. Unlike traditional GANs, the discriminator within SLGAN does not discriminate whether data originates from the discriminator or the generator; instead, it focuses on predicting the correctness of each tag within the tag sequence. We conducted evaluations on six different tasks spanning four languages, including Chinese, Japanese, and Korean Word Segmentation, Chinese and English Named Entity Recognition, and Chinese Part-of-Speech Tagging. Our experimental results illustrate that SLGAN represents a versatile and highly effective solution, consistently achieving state-of-the-art or competitive performance results, irrespective of the specific task or language under consideration.

2022

pdf bib
Word Segmentation by Separation Inference for East Asian Languages
Yu Tong | Jingzhi Guo | Jizhe Zhou | Ge Chen | Guokai Zheng
Findings of the Association for Computational Linguistics: ACL 2022

Chinese Word Segmentation (CWS) intends to divide a raw sentence into words through sequence labeling. Thinking in reverse, CWS can also be viewed as a process of grouping a sequence of characters into a sequence of words. In such a way, CWS is reformed as a separation inference task in every adjacent character pair. Since every character is either connected or not connected to the others, the tagging schema is simplified as two tags “Connection” (C) or “NoConnection” (NC). Therefore, bigram is specially tailored for “C-NC” to model the separation state of every two consecutive characters. Our Separation Inference (SpIn) framework is evaluated on five public datasets, is demonstrated to work for machine learning and deep learning models, and outperforms state-of-the-art performance for CWS in all experiments. Performance boosts on Japanese Word Segmentation (JWS) and Korean Word Segmentation (KWS) further prove the framework is universal and effective for East Asian Languages.