Futing Wang


2025

pdf bib
Keys to Robust Edits: From Theoretical Insights to Practical Advances
Jianhao Yan | Futing Wang | Yun Luo | Yafu Li | Yue Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) struggle with maintaining accurate knowledge due to conflicting/outdated parametric memories. While locate-and-edit methods address this, their reliance on models’ internal representations leads to robustness failures in long-context reasoning and paraphrased queries. We identify a fundamental limitation of locate-and-edit methods: existing semantic keys (for memory localization) cannot simultaneously satisfy robustness (context-invariant activation) and specificity (precise knowledge discrimination). Through theoretical error-bound analysis, we establish formal criteria for effective editing.Our solution introduces Robust Edit Pathway (REP), a plug-and-play module that: (1) disentangles editing keys from native model representations; (2) dynamically adjusts keys via contrastive learning to achieve robustness-specificity balance. Extensive experiments across various editing methods (ROME/MEMIT/R-ROME/EMMET), existing LLMs (LLaMA2, QWen, Mistral), and datasets (CounterFact, ZsRE) show that REP improves success rate over robustness tests by up-to 66.4% while maintaining the success rate unaffected.