2025
pdf
bib
abs
Past Meets Present: Creating Historical Analogy with Large Language Models
Nianqi Li
|
Siyu Yuan
|
Jiangjie Chen
|
Jiaqing Liang
|
Feng Wei
|
Zujie Liang
|
Deqing Yang
|
Yanghua Xiao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Historical analogies, which compare known past events with contemporary but unfamiliar events, are important abilities that help people make decisions and understand the world. However, research in applied history suggests that people have difficulty finding appropriate analogies. And previous studies in the AI community have also overlooked historical analogies. To fill this gap, in this paper, we focus on the historical analogy acquisition task, which aims to acquire analogous historical events for a given event. We explore retrieval and generation methods for acquiring historical analogies based on different large language models (LLMs). Furthermore, we propose a self-reflection method to mitigate hallucinations and stereotypes when LLMs generate historical analogies. Through human evaluations and our specially designed automatic multi-dimensional assessment, we find that LLMs generally have a good potential for historical analogies. And the performance of the models can be further improved by using our self-reflection method. Resources of this paper can be found at https://anonymous.4open.science/r/Historical-Analogy-of-LLMs-FC17
2024
pdf
bib
abs
SEGMENT+: Long Text Processing with Short-Context Language Models
Wei Shi
|
Shuang Li
|
Kerun Yu
|
Jinglei Chen
|
Zujie Liang
|
Xinhui Wu
|
Yuxi Qian
|
Feng Wei
|
Bo Zheng
|
Jiaqing Liang
|
Jiangjie Chen
|
Yanghua Xiao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce Segment+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. Segment+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of Segment+ in improving performance.
pdf
bib
abs
CR-LLM: A Dataset and Optimization for Concept Reasoning of Large Language Models
Nianqi Li
|
Jingping Liu
|
Sihang Jiang
|
Haiyun Jiang
|
Yanghua Xiao
|
Jiaqing Liang
|
Zujie Liang
|
Feng Wei
|
Jinglei Chen
|
Zhenghong Hao
|
Bing Han
Findings of the Association for Computational Linguistics: ACL 2024
Concept reasoning is an important capability for models to understand the world. However, the existing datasets, such as concept extraction and concept generation, suffer from modeledge leakage and context leakage. To address these limitations, we construct a dataset of concept reasoning for large language models (CR-LLM) with modeledge leakage prevention and context leakage prevention, which consists of 2,167 samples and covers different concept types. In addition, we propose a hybrid reasoning method, consisting of inductive reasoning, deductive reasoning and a controller. This method allows large language models to adaptively select the optimal reasoning method for each input sample. Finally, we conduct extensive experiments on CR-LLM using different models and methods. The results show that existing large language models and reasoning methods perform sub-optimally in the concept reasoning task. In contrast, our proposed method significantly improves the capabilities, achieving a 7% increase in accuracy compared to CoT and demonstrating better granularity. We release CR-LLM and code at https://github.com/Nianqi-Li/Concept-Reasoning-for-LLMs.
2023
pdf
bib
abs
Prompts Can Play Lottery Tickets Well: Achieving Lifelong Information Extraction via Lottery Prompt Tuning
Zujie Liang
|
Feng Wei
|
Yin Jie
|
Yuxi Qian
|
Zhenghong Hao
|
Bing Han
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Thanks to the recent success of Pre-trained Language Models (PLMs), it has become a promising research direction to develop a universal model (UIE) that can solve all typical information extraction tasks within one generative framework. Nonetheless, in real-world scenarios of UIE applications, new data of different IE tasks and domains usually come in a stream over time. A desirable UIE system should be capable of continually learning new tasks without forgetting old ones, thereby allowing knowledge and functionalities expansion without re-training the whole system. In this paper, we study the UIE system under a more challenging yet practical scenario, i.e., “lifelong learning” settings, to evaluate its abilities in three aspects, including knowledge sharing and expansion, catastrophic forgetting prevention, and rapid generalization on few-shot and unseen tasks. To achieve these three goals, we present a novel parameter- and deployment-efficient prompt tuning method namely Lottery Prompt Tuning (LPT).LPT freezes the PLM’s parameters and sequentially learns compact pruned prompt vectors for each task leveraging a binary prompt mask, while keeping the prompt parameters selected by the previous tasks insusceptible. Furthermore, we use a simple yet effective method to perform mask selection and show the powerful transferability of Lottery Prompts to novel tasks. Extensive experiments demonstrate that LPT consistently sets state-of-the-art performance on multiple lifelong learning settings of UIE, including task-incremental setting on seen tasks, few-shot adaptation, and zero-shot generalization on novel tasks.