Feiyu Duan


2025

pdf bib
LLMs Know What They Need: Leveraging a Missing Information Guided Framework to Empower Retrieval-Augmented Generation
Keheng Wang | Feiyu Duan | Peiguang Li | Sirui Wang | Xunliang Cai
Proceedings of the 31st International Conference on Computational Linguistics

Retrieval-Augmented Generation (RAG) demonstrates great value in alleviating outdated knowledge or hallucination by supplying LLMs with updated and relevant knowledge. However, RAG still faces several challenges in tackling complex multi-hop queries, which require LLMs to perform accurate reasoning and retrieval at each step. Inspired by the human reasoning process, where we progressively search for missing information after acquiring useful clues, it is natural to question whether LLMs have similar capabilities. In this work, we first experimentally verified the ability of LLMs to extract information from the retrieved knowledge as well as to know what is still missing. Based on the above discovery, we propose a Missing Information Guided Retrieve-Extraction-Solving paradigm (MIGRES), where we leverage the identification of missing information to generate a targeted query that steers the subsequent knowledge retrieval. Besides, we design a sentence-level re-ranking filtering approach to filter the irrelevant content from the document, along with the information extraction capability of LLMs to extract useful information from denoised documents. Extensive experiments conducted on multiple public datasets reveal the superiority of the proposed MIGRES method, and analytical experiments demonstrate the effectiveness of our proposed modules. Code and data are released in https://github.com/AdelWang/MIGRES.

pdf bib
FRAME: Boosting LLMs with A Four-Quadrant Multi-Stage Pretraining Strategy
Xuemiao Zhang | Feiyu Duan | Xu Liangyu | Yongwei Zhou | Sirui Wang | Rongxiang Weng | Jingang Wang | Xunliang Cai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have significantly advanced human language understanding and generation, with pretraining data quality and organization being crucial to their performance. Multi-stage pretraining is a promising approach, but existing methods often lack quantitative criteria for data partitioning and instead rely on intuitive heuristics. In this paper, we propose the novel Four-quadRAnt Multi-stage prEtraining strategy (FRAME), guided by the established principle of organizing the pretraining process into four stages to achieve significant loss reductions four times. This principle is grounded in two key findings: first, training on high Perplexity (PPL) data followed by low PPL data, and second, training on low PPL difference (PD) data followed by high PD data, both causing the loss to drop significantly twice and performance enhancements. By partitioning data into four quadrants and strategically organizing them, FRAME achieves a remarkable 16.8% average improvement over random across MMLU and CMMLU for the 3B model, effectively boosting LLM performance.

pdf bib
Preference Curriculum: LLMs Should Always Be Pretrained on Their Preferred Data
Xuemiao Zhang | Xu Liangyu | Feiyu Duan | Yongwei Zhou | Sirui Wang | Rongxiang Weng | Jingang Wang | Xunliang Cai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) generally utilize a consistent data distribution throughout the pretraining process. However, as the model’s capability improves, it is intuitive that its data preferences dynamically change, indicating the need for pretraining with different data at various training stages. To achieve it, we propose the Perplexity Difference (PD) based Preference Curriculum learning (PDPC) framework, which always perceives and uses the data preferred by LLMs to train and boost them. First, we introduce the PD metric to quantify the difference in how challenging a sample is for weak versus strong models. Samples with high PD are more challenging for weak models to learn and are more suitable to be arranged in the later stage of pretraining. Second, we propose the preference function to approximate and predict the data preference of the LLM at any training step, so as to complete the arrangement of the dataset offline and ensure continuous training without interruption. Experimental results on 1.3B and 3B models demonstrate that PDPC significantly surpasses baselines. Notably, the 3B model trained on 1T tokens achieves an increased average accuracy of over 8.1% across MMLU and CMMLU.

2024

pdf bib
PositionID: LLMs can Control Lengths, Copy and Paste with Explicit Positional Awareness
Noah Wang | Feiyu Duan | Yibo Zhang | Wangchunshu Zhou | Ke Xu | Wenhao Huang | Jie Fu
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) demonstrate impressive capabilities across various domains, including role-playing, creative writing, mathematical reasoning, and coding. Despite these advancements, LLMs still encounter challenges with length control, frequently failing to adhere to specific length constraints due to their token-level operations and insufficient training on data with strict length limitations. We identify this issue as stemming from a lack of positional awareness and propose novel approaches—PositionID Prompting and PositionID Fine-Tuning—to address it. These methods enhance the model’s ability to continuously monitor and manage text length during generation. Additionally, we introduce PositionID CP Prompting to enable LLMs to perform copy and paste operations accurately. Furthermore, we develop two benchmarks for evaluating length control and copy-paste abilities. Our experiments demonstrate that our methods significantly improve the model’s adherence to length constraints and copy-paste accuracy without compromising response quality.