2025
pdf
bib
abs
ScaleBiO: Scalable Bilevel Optimization for LLM Data Reweighting
Rui Pan
|
Dylan Zhang
|
Hanning Zhang
|
Xingyuan Pan
|
Minrui Xu
|
Jipeng Zhang
|
Renjie Pi
|
Xiaoyu Wang
|
Tong Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms has emerged in the theoretical literature, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called _ScaleBiO_, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to ~30B-sized LLMs on 8×H100 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including Llama-3-8B, Gemma-2-9B, Qwen-2-7B, and Qwen-2.5-32B, where bilevel optimization succeeds in instruction-following and math reasoning tasks, outperforming several popular baselines, including uniform sampling, influence-aware data filtering, and reference-model-based sampling methods. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.
pdf
bib
abs
Building A Proof-Oriented Programmer That Is 64% Better Than GPT-4o Under Data Scarcity
Dylan Zhang
|
Justin Wang
|
Tianran Sun
Findings of the Association for Computational Linguistics: ACL 2025
Existing LMs struggle with proof-oriented programming due to data scarcity, which manifest in two key ways: (1) a lack of sufficient corpora for proof-oriented programming languages such as F*, and (2) the absence of large-scale, project-level proof-oriented implementations that can teach the model the intricate reasoning process when performing proof-oriented programming. We present the first on synthetic data augmentation for project level proof oriented programming for both generation and repair. Our method addresses data scarcity by synthesizing basic proof-oriented programming problems for proficiency in that language; incorporating diverse coding data for reasoning capability elicitation and creating new proofs and repair data within existing repositories. This approach enables language models to both synthesize and repair proofs for function- and repository-level code. We show that our fine-tuned 14B parameter model, PoPilot, can exceed the performance of the models that outperforms GPT-4o in project-level proof-oriented programming by 64% relative margin, and can improve GPT-4o’s performance by 54% by repairing its outputs over GPT-4o’s self-repair.
pdf
bib
abs
Diversification Catalyzes Language Models’ Instruction Generalization To Unseen Semantics
Dylan Zhang
|
Justin Wang
|
Francois Charton
Findings of the Association for Computational Linguistics: ACL 2025
Instruction-tuned language models excel in knowledge, reasoning, and instruction-following. While knowledge and reasoning are well-explored, the factors enabling generalization to unseen instructions remain underexplored due to challenges in isolating instruction-following dynamics.In this work, we model instruction-following as a computational process and design controlled experiments inspired by the Turing-complete Markov algorithm to disentangle its dynamics. Our findings reveal that the ability to generalize to instructions with unseen semantics emerges only when training data is strategically diversified across rich semantics. This finding gives us the hammer that breaks down the wall separating training instructions from unseen ones encountered in the wild. For specialist models, a balanced mix of in-domain and diverse out-of-domain tasks enhances performance more effectively than simply increasing in-domain data. For generalist models, domain diversification consistently outweighs the costs of reduced task-specific data, regardless of data budgets. Furthermore, we show that proper diversification with a lower data budget can outperform simply scaling up data volume. These findings highlight strategic data diversification as key to optimizing instruction-following and improving model performance across applications.
2024
pdf
bib
abs
Visual Prompting in LLMs for Enhancing Emotion Recognition
Qixuan Zhang
|
Zhifeng Wang
|
Dylan Zhang
|
Wenjia Niu
|
Sabrina Caldwell
|
Tom Gedeon
|
Yang Liu
|
Zhenyue Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Vision Large Language Models (VLLMs) are transforming the intersection of computer vision and natural language processing; however, the potential of using visual prompts for emotion recognition in these models remains largely unexplored and untapped. Traditional methods in VLLMs struggle with spatial localization and often discard valuable global context. We propose a novel Set-of-Vision prompting (SoV) approach that enhances zero-shot emotion recognition by using spatial information, such as bounding boxes and facial landmarks, to mark targets precisely. SoV improves accuracy in face count and emotion categorization while preserving the enriched image context. Through comprehensive experimentation and analysis of recent commercial or open-source VLLMs, we evaluate the SoV model’s ability to comprehend facial expressions in natural environments. Our findings demonstrate the effectiveness of integrating spatial visual prompts into VLLMs for improving emotion recognition performance.