Dongrui Liu


2025

pdf bib
VLSBench: Unveiling Visual Leakage in Multimodal Safety
Xuhao Hu | Dongrui Liu | Hao Li | Xuanjing Huang | Jing Shao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counterintuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs aligned with image-text pairs. To explain such a phenomenon, we discover a Visual Safety Information Leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky content in the image has been revealed in the textual query. Thus, MLLMs can easily refuse these sensitive image-text pairs according to textual queries only, leading to unreliable cross-modality safety evaluation of MLLMs. We also conduct a further comparison experiment between textual alignment and multimodal alignment to highlight this drawback. To this end, we construct Visual Leakless Safety Bench (VLSBench) with 2.2k image-text pairs through an automated data pipeline. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, i.e., LLaVA, Qwen2-VL and GPT-4o. Besides, we empirically compare textual and multimodal alignment methods on VLSBench and find that textual alignment is effective enough for multimodal safety scenarios with VSIL, while multimodal alignment is preferable for safety scenarios without VSIL.

pdf bib
The Tug of War Within: Mitigating the Fairness-Privacy Conflicts in Large Language Models
Chen Qian | Dongrui Liu | Jie Zhang | Yong Liu | Jing Shao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Ensuring awareness of fairness and privacy in Large Language Models (LLMs) is critical. Interestingly, we discover a counter-intuitive trade-off phenomenon that enhancing an LLM’s privacy awareness through Supervised Fine-Tuning (SFT) methods significantly decreases its fairness awareness with thousands of samples. To address this issue, inspired by the information theory, we introduce a training-free method to Suppress the Privacy and faIrness coupled Neurons (SPIN), which theoretically and empirically decrease the mutual information between fairness and privacy awareness. Extensive experimental results demonstrate that SPIN eliminates the trade-off phenomenon and significantly improves LLMs’ fairness and privacy awareness simultaneously without compromising general capabilities, e.g., improving Qwen-2-7B-Instruct’s fairness awareness by 12.2% and privacy awareness by 14.0%.More crucially, SPIN remains robust and effective with limited annotated data or even when only malicious fine-tuning data is available, whereas SFT methods may fail to perform properly in such scenarios. Furthermore, we show that SPIN could generalize to other potential trade-off dimensions.We hope this study provides valuable insights into concurrently addressing fairness and privacy concerns in LLMs and can be integrated into comprehensive frameworks to develop more ethical and responsible AI systems. Our code is available at https://github.com/ChnQ/SPIN.

pdf bib
Cooperative or Competitive? Understanding the Interaction between Attention Heads From A Game Theory Perspective
Xiaoye Qu | Zengqi Yu | Dongrui Liu | Wei Wei | Daizong Liu | Jianfeng Dong | Yu Cheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the remarkable success of attention-based large language models (LLMs), the precise interaction mechanisms between attention heads remain poorly understood. In contrast to prevalent methods that focus on individual head contributions, we rigorously analyze the intricate interplay among attention heads through a novel framework based on the Harsanyi dividend, a concept from cooperative game theory. Our analysis reveals that significant positive Harsanyi dividends are sparsely distributed across head combinations, indicating that most heads do not contribute cooperatively. Moreover, certain head combinations exhibit negative dividends, indicating implicit competitive relationships. To further optimize the interactions among attention heads, we propose a training-free Game-theoretic Attention Calibration (GAC) method. Specifically, GAC selectively retains heads demonstrating significant cooperative gains and applies fine-grained distributional adjustments to the remaining heads. Comprehensive experiments across 17 benchmarks demonstrate the effectiveness of our proposed GAC and its superior generalization capabilities across diverse model families, scales, and modalities. Crucially, the discovered interaction phenomena offer a path toward a deeper understanding of the behaviors of LLMs.

pdf bib
LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint
Qianli Ma | Dongrui Liu | Qian Chen | Linfeng Zhang | Jing Shao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: neuron misidentification due to simplistic parameter magnitude-based selection, and cross-task neuron interference during merging.To address these challenges, we propose LED-Merging, a three-stage framework that Locates task-specific neurons via gradient-based attribution, dynamically Elects critical neurons through multi-model importance fusion, and Disjoints conflicting updates through parameter isolation.Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging effectively reduces harmful response rates, showing a 31.4% decrease on Llama-3-8B-Instruct on HarmBench, while simultaneously preserving 95% of utility performance, such as achieving 52.39% accuracy on GSM8K.LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs.Code is available at https://github.com/MqLeet/LED-Merging

pdf bib
LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts
Qibing Ren | Hao Li | Dongrui Liu | Zhanxu Xie | Xiaoya Lu | Yu Qiao | Lei Sha | Junchi Yan | Lizhuang Ma | Jing Shao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training. In this paper, we identify a new safety vulnerability in LLMs: their susceptibility to natural distribution shifts between attack prompts and original toxic prompts, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms. To explore this issue, we introduce a novel attack method, ActorBreaker, which identifies actors related to toxic prompts within pre-training distribution to craft multi-turn prompts that gradually lead LLMs to reveal unsafe content. ActorBreaker is grounded in Latour’s actor-network theory, encompassing both human and non-human actors to capture a broader range of vulnerabilities. Our experimental results demonstrate that ActorBreaker outperforms existing attack methods in terms of diversity, effectiveness, and efficiency across aligned LLMs. To address this vulnerability, we propose expanding safety training to cover a broader semantic space of toxic content. We thus construct a multi-turn safety dataset using ActorBreaker. Fine-tuning models on our dataset shows significant improvements in robustness, though with some trade-offs in utility. Code is available at https://github.com/AI45Lab/ActorAttack.

pdf bib
EvoBench: Towards Real-world LLM-Generated Text Detection Benchmarking for Evolving Large Language Models
Xiao Yu | Yi Yu | Dongrui Liu | Kejiang Chen | Weiming Zhang | Nenghai Yu | Jing Shao
Findings of the Association for Computational Linguistics: ACL 2025

With the widespread of Large Language Models (LLMs), there has been an increasing need to detect LLM-generated texts, prompting extensive research in this area. However, existing detection methods mainly evaluate on static benchmarks, which neglect the evolving nature of LLMs. Relying on existing static benchmarks could create a misleading sense of security, overestimating the real-world effectiveness of detection methods.To bridge this gap, we introduce EvoBench, a dynamic benchmark considering a new dimension of generalization across continuously evolving LLMs.EvoBench categorizes the evolving LLMs into (1) updates over time and (2) developments like finetuning and pruning, covering 7 LLM families and their 29 evolving versions. To measure the generalization across evolving LLMs, we introduce a new EMG (Evolving Model Generalization) metric. Our evaluation of 14 detection methods on EvoBench reveals that they all struggle to maintain generalization when confronted with evolving LLMs. To mitigate the generalization problems, we further propose improvement strategies. For zero-shot detectors, we propose pruning the scoring model to extract shared features. For supervised detectors, we also propose a practical training strategy.Our research sheds light on critical challenges in real-world LLM-generated text detection and represents a significant step toward practical applications.

2024

pdf bib
Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models
Chen Qian | Jie Zhang | Wei Yao | Dongrui Liu | Zhenfei Yin | Yu Qiao | Yong Liu | Jing Shao
Findings of the Association for Computational Linguistics: ACL 2024

Ensuring the trustworthiness of large language models (LLMs) is crucial. Most studies concentrate on fully pre-trained LLMs to better understand and improve LLMs’ trustworthiness. In this paper, to reveal the untapped potential of pre-training, we pioneer the exploration of LLMs’ trustworthiness during this period, focusing on five key dimensions: reliability, privacy, toxicity, fairness, and robustness. To begin with, we apply linear probing to LLMs. The high probing accuracy suggests that LLMs in early pre-training can already distinguish concepts in each trustworthiness dimension. Therefore, to further uncover the hidden possibilities of pre-training, we extract steering vectors from a LLM’s pre-training checkpoints to enhance the LLM’s trustworthiness. Finally, inspired by the theoretical result that mutual information estimation is bounded by linear probing accuracy, we also probe LLMs with mutual information to investigate the dynamics of trustworthiness during pre-training. We are the first to observe a similar two-phase phenomenon: fitting and compression. This research provides an initial exploration of trustworthiness modeling during LLM pre-training, seeking to unveil new insights and spur further developments in the field.

pdf bib
Identifying Semantic Induction Heads to Understand In-Context Learning
Jie Ren | Qipeng Guo | Hang Yan | Dongrui Liu | Quanshi Zhang | Xipeng Qiu | Dahua Lin
Findings of the Association for Computational Linguistics: ACL 2024

Although large language models (LLMs) have demonstrated remarkable performance, the lack of transparency in their inference logic raises concerns about their trustworthiness. To gain a better understanding of LLMs, we conduct a detailed analysis of the operations of attention heads and aim to better understand the in-context learning of LLMs. Specifically, we investigate whether attention heads encode two types of relationships between tokens present in natural languages: the syntactic dependency parsed from sentences and the relation within knowledge graphs. We find that certain attention heads exhibit a pattern where, when attending to subject tokens, they recall object tokens and increase the output logits of those object tokens. More crucially, the formulation of such semantic induction heads has a close correlation with the emergence of the in-context learning ability of language models. The study of semantic attention heads advances our understanding of the intricate operations of attention heads in transformers, and further provides new insights into the in-context learning of LLMs.