This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We introduce TableLLM, a robust large language model (LLM) with 8 billion parameters, purpose-built for proficiently handling tabular data manipulation tasks, whether they are embedded within documents or spreadsheets, catering to real-world office scenarios. We propose a distant supervision method for training, which comprises a reasoning process extension strategy, aiding in training LLMs to understand reasoning patterns more effectively as well as a cross-way validation strategy, ensuring the quality of the automatically generated data. To evaluate the performance of TableLLM, we have crafted benchmarks tailored to address both document and spreadsheet formats as well as constructed a well-organized evaluation pipeline capable of handling both scenarios. Thorough evaluations underscore the advantages of TableLLM when compared to various existing general-purpose and tabular data-focused LLMs. We have publicly released the model checkpoint, source code, benchmarks, and a web application for user interaction on this anonymized repository.
Large language models (LLMs) have been applied across various intelligent educational tasks to assist teaching. While preliminary studies have focused on task-specific, independent LLM-empowered agents, the potential of LLMs within a multi-agent collaborative framework for classroom simulation with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation teaching framework. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Using the Flanders Interactive Analysis System and Community of Inquiry theoretical frameworks from educational analysis, we demonstrate that LLMs can simulate a dynamic learning environment for users with active teacher-student and student-student interactions. We also observe group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching. Our implementation and service can be found at https://github.com/THU-MAIC/SimClass.
We investigate the usage of entity linking (EL)in downstream tasks and present the first modularized EL toolkit for easy task adaptation. Different from the existing EL methods that dealwith all the features simultaneously, we modularize the whole model into separate parts witheach feature. This decoupled design enablesflexibly adding new features without retraining the whole model as well as flow visualization with better interpretability of the ELresult. We release the corresponding toolkit,HOSMEL, for Chinese, with three flexible usage modes, a live demo, and a demonstrationvideo. Experiments on two benchmarks forthe question answering task demonstrate thatHOSMEL achieves much less time and spaceconsumption as well as significantly better accuracy performance compared with existingSOTA EL methods. We hope the release ofHOSMEL will call for more attention to studyEL for downstream tasks in non-English languages.