Damien Graux


2025

pdf bib
GeAR: Graph-enhanced Agent for Retrieval-augmented Generation
Zhili Shen | Chenxin Diao | Pavlos Vougiouklis | Pascual Merita | Shriram Piramanayagam | Enting Chen | Damien Graux | Andre Melo | Ruofei Lai | Zeren Jiang | Zhongyang Li | Ye Qi | Yang Ren | Dandan Tu | Jeff Z. Pan
Findings of the Association for Computational Linguistics: ACL 2025

Retrieval-augmented Generation (RAG) relies on effective retrieval capabilities, yet traditional sparse and dense retrievers inherently struggle with multi-hop retrieval scenarios. In this paper, we introduce G\small{E}\normalsize{AR}, a system that advances RAG performance through two key innovations: (i) an efficient graph expansion mechanism that augments any conventional base retriever, such as BM25, and (ii) an agent framework that incorporates the resulting graph-based retrieval into a multi-step retrieval framework. Our evaluation demonstrates G\small{E}\normalsize{AR}‘s superior retrieval capabilities across three multi-hop question answering datasets. Notably, our system achieves state-of-the-art results with improvements exceeding 10% on the challenging MuSiQue dataset, while consuming fewer tokens and requiring fewer iterations than existing multi-step retrieval systems. The project page is available at https://gear-rag.github.io.