Chun Peng
2025
Improving Automatic Evaluation of Large Language Models (LLMs) in Biomedical Relation Extraction via LLMs-as-the-Judge
Md Tahmid Rahman Laskar
|
Israt Jahan
|
Elham Dolatabadi
|
Chun Peng
|
Enamul Hoque
|
Jimmy Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have demonstrated impressive performance in biomedical relation extraction, even in zero-shot scenarios. However, evaluating LLMs in this task remains challenging due to their ability to generate human-like text, often producing synonyms or abbreviations of gold-standard answers, making traditional automatic evaluation metrics unreliable. On the other hand, while human evaluation is more reliable, it is costly and time-consuming, making it impractical for real-world applications. This paper investigates the use of LLMs-as-the-Judge as an alternative evaluation method for biomedical relation extraction. We benchmark 8 LLMs as judges to evaluate the responses generated by 5 other LLMs across 3 biomedical relation extraction datasets. Unlike other text-generation tasks, we observe that LLM-based judges perform quite poorly (usually below 50% accuracy) in the biomedical relation extraction task. Our findings reveal that it happens mainly because relations extracted by LLMs do not adhere to any standard format. To address this, we propose structured output formatting for LLM-generated responses that helps LLM-Judges to improve their performance by about 15% (on average). We also introduce a domain adaptation technique to further enhance LLM-Judge performance by effectively transferring knowledge between datasets. We release both our human-annotated and LLM-annotated judgment data (36k samples in total) for public use here: https://github.com/tahmedge/llm_judge_biomedical_re.
2023
Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
Israt Jahan
|
Md Tahmid Rahman Laskar
|
Chun Peng
|
Jimmy Huang
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
ChatGPT is a large language model developed by OpenAI. Despite its impressive performance across various tasks, no prior work has investigated its capability in the biomedical domain yet. To this end, this paper aims to evaluate the performance of ChatGPT on various benchmark biomedical tasks, such as relation extraction, document classification, question answering, and summarization. To the best of our knowledge, this is the first work that conducts an extensive evaluation of ChatGPT in the biomedical domain. Interestingly, we find based on our evaluation that in biomedical datasets that have smaller training sets, zero-shot ChatGPT even outperforms the state-of-the-art fine-tuned generative transformer models, such as BioGPT and BioBART. This suggests that ChatGPT’s pre-training on large text corpora makes it quite specialized even in the biomedical domain. Our findings demonstrate that ChatGPT has the potential to be a valuable tool for various tasks in the biomedical domain that lack large annotated data.