2025
pdf
bib
abs
Towards Adapting Open-Source Large Language Models for Expert-Level Clinical Note Generation
Hanyin Wang
|
Chufan Gao
|
Bolun Liu
|
Qiping Xu
|
Guleid Hussein
|
Mohamad El Labban
|
Kingsley Iheasirim
|
Hariprasad Reddy Korsapati
|
Chuck Outcalt
|
Jimeng Sun
Findings of the Association for Computational Linguistics: ACL 2025
Proprietary Large Language Models (LLMs) such as GPT-4 and Gemini have demonstrated promising capabilities in clinical text summarization tasks. However, due to patient data privacy concerns and computational costs, many healthcare providers prefer using small, locally-hosted models over external generic LLMs. This study presents a comprehensive domain- and task-specific adaptation process for the open-source LLaMA-2 13 billion parameter model, enabling it to generate high-quality clinical notes from outpatient patient-doctor dialogues. Our process incorporates continued pre-training, supervised fine-tuning, and reinforcement learning from both AI and human feedback. We introduced a new approach, DistillDirect, for performing on-policy reinforcement learning with Gemini 1.0 Pro as the teacher model. Our resulting model, LLaMA-Clinic, can generate clinical notes comparable in quality to those authored by physicians. In a blinded physician reader study, the majority (92.8%) of individual evaluations rated the notes generated by LLaMA-Clinic as “acceptable” or higher across all three criteria: real-world readiness, completeness, and accuracy. In the more challenging “Assessment and Plan” section, LLaMA-Clinic received the same score as the notes authored by physicians. We highlight key considerations for future clinical note-generation tasks, emphasizing the importance of pre-defining a best-practice note format, rather than relying on LLMs to determine this for clinical practice.
2024
pdf
bib
abs
TTM-RE: Memory-Augmented Document-Level Relation Extraction
Chufan Gao
|
Xuan Wang
|
Jimeng Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Document-level relation extraction aims to categorize the association between any two entities within a document.We find that previous methods for document-level relation extraction are ineffective in exploiting the full potential of large amounts of training data with varied noise levels. For example, in the ReDocRED benchmark dataset, state-of-the-art methods trained on the large-scale, lower-quality, distantly supervised training data generally do not perform better than those trained solely on the smaller, high-quality, human-annotated training data. To unlock the full potential of large-scale noisy training data for document-level relation extraction, we propose TTM-RE, a novel approach that integrates a trainable memory module, known as the Token Turing Machine, with a noisy-robust loss function that accounts for the positive-unlabeled setting. The trainable memory module enhances knowledge extraction from the large-scale noisy training dataset through an explicit learning of the memory tokens and a soft integration of the learned memory tokens into the input representation, thereby improving the model’s effectiveness for the final relation classification. Extensive experiments on ReDocRED, a benchmark dataset for document-level relation extraction, reveal that TTM-RE achieves state-of-the-art performance (with an absolute F1 score improvement of over 3%). Ablation studies further illustrate the superiority of TTM-RE in other domains (the ChemDisGene dataset in the biomedical domain) and under highly unlabeled settings.
pdf
bib
abs
PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming
Chufan Gao
|
Xulin Fan
|
Jimeng Sun
|
Xuan Wang
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)
Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number “no relation” instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the “no relation” problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.