Chuanghao Ding
2025
Consultant Decoding: Yet Another Synergistic Mechanism
Chuanghao Ding
|
Jiaping Wang
|
Ziqing Yang
|
Xiaoliang Wang
|
Dahua Lin
|
Nguyen Cam-Tu
|
Fei Tan
Findings of the Association for Computational Linguistics: ACL 2025
The synergistic mechanism based on Speculative Decoding (SD) has garnered considerable attention as a simple yet effective approach for accelerating the inference of large language models (LLMs). Nonetheless, the high rejection rates require repeated LLMs calls to validate draft tokens, undermining the overall efficiency gain of SD.In this work, we revisit existing verification mechanisms and propose a novel synergetic mechanism Consultant Decoding (CD). CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality (~100% of the target model’s performance). Interestingly, this is achieved by combining models whose parameter sizes differ by two orders of magnitude.In addition, CD reduces the call frequency of the large target model to below 10%, particularly in more demanding tasks.CD’s performance was even found to surpass that of the large target model, which theoretically represents the upper bound for speculative decoding.
2024
CMR Scaling Law: Predicting Critical Mixture Ratios for Continual Pre-training of Language Models
Jiawei Gu
|
Zacc Yang
|
Chuanghao Ding
|
Rui Zhao
|
Fei Tan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) excel in diverse tasks but often underperform in specialized fields due to limited domain-specific or proprietary corpus. Continual pre-training (CPT) enhances LLM capabilities by imbuing new domain-specific or proprietary knowledge while replaying general corpus to prevent catastrophic forgetting. The data mixture ratio of general corpus and domain-specific corpus, however, has been chosen heuristically, leading to sub-optimal training efficiency in practice. In this context, we attempt to re-visit the scaling behavior of LLMs under the hood of CPT, and discover a power-law relationship between loss, mixture ratio, and training tokens scale. We formalize the trade-off between general and domain-specific capabilities, leading to a well-defined Critical Mixture Ratio (CMR) of general and domain data. By striking the balance, CMR maintains the model’s general ability and achieves the desired domain transfer, ensuring the highest utilization of available resources. Considering the balance between efficiency and effectiveness, CMR can be regarded as the optimal mixture ratio. Through extensive experiments, we ascertain the predictability of CMR, propose CMR scaling law and have substantiated its generalization. These findings offer practical guidelines for optimizing LLM training in specialized domains, ensuring both general and domain-specific performance while efficiently managing training resources.