Quantizing large language models (LLMs) to 1-bit precision significantly reduces computational costs, but existing quantization techniques suffer from noticeable performance degradation when using weight and activation precisions below 4 bits (W4A4). In this paper, we propose a post-training quantization framework with W(1+1)A(1×4) configuration, where weights are quantized to 1 bit with an additional 1 bit for fine-grain grouping and activations are quantized to 1 bit with a 4-fold increase in the number of channels. For weight quantization, we propose utilizing Hessian-aware fine-grained grouping along with an EM-based quantization scheme. For activation quantization, we decompose INT4-quantized activations into a 4 × INT1 format equivalently and simultaneously smooth the scaling factors based on quantization errors, which further reduces the quantization errors in activations. Our method surpasses state-of-the-art (SOTA) LLM quantization baselines on W2A4 across multiple tasks, pushing the boundaries of existing LLM quantization methods toward fully binarized models. Code is available at https://github.com/JimmyCrave/LLM-PTQ-binarization.
Knowledge graph completion (KGC) aims to infer missing or incomplete parts in knowledge graph. The existing models are generally divided into structure-based and description-based models, among description-based models often require longer training and inference times as well as increased memory usage. In this paper, we propose Pre-Encoded Masked Language Model (PEMLM) to efficiently solve KGC problem. By encoding textual descriptions into semantic representations before training, the necessary resources are significantly reduced. Furthermore, we introduce a straightforward but effective fusion framework to integrate structural embedding with pre-encoded semantic description, which enhances the model’s prediction performance on 1-N relations. The experimental results demonstrate that our proposed strategy attains state-of-the-art performance on the WN18RR (MRR+5.4% and Hits@1+6.4%) and UMLS datasets. Compared to existing models, we have increased inference speed by 30x and reduced training memory by approximately 60%.
In recent years, pre-trained models have become dominant in most natural language processing (NLP) tasks. However, in the area of Automated Essay Scoring (AES), pre-trained models such as BERT have not been properly used to outperform other deep learning models such as LSTM. In this paper, we introduce a novel multi-scale essay representation for BERT that can be jointly learned. We also employ multiple losses and transfer learning from out-of-domain essays to further improve the performance. Experiment results show that our approach derives much benefit from joint learning of multi-scale essay representation and obtains almost the state-of-the-art result among all deep learning models in the ASAP task. Our multi-scale essay representation also generalizes well to CommonLit Readability Prize data set, which suggests that the novel text representation proposed in this paper may be a new and effective choice for long-text tasks.