Chong Peng
2025
From Observation to Understanding: Front-Door Adjustments with Uncertainty Calibration for Enhancing Egocentric Reasoning in LVLMs
Shenshen Li
|
Wenxin Meng
|
Lei Wang
|
Hao Yang
|
Chong Peng
|
Peng Yan
|
Fumin Shen
|
Jingkuan Song
|
Heng Tao Shen
|
Xing Xu
Findings of the Association for Computational Linguistics: ACL 2025
Recent progress in large vision-language models (LVLMs) has shown substantial potential across a broad spectrum of third-person tasks. However, adapting these LVLMs to egocentric scenarios remains challenging due to their third-person training bias. Existing methods that adapt LVLMs for first-person tasks often overlook critical agent-environment interactions, limiting their ability to perform egocentric reasoning. To address these challenges, we propose a novel zero-shot paradigm termed Front-Door Adjustments with Uncertainty Calibration (FRUIT) to enhance the egocentric reasoning abilities of LVLMs by simulating human causal reasoning. Specifically, the FRUIT operates in two stages: observation and understanding. Unlike conventional prompting techniques, we formalize egocentric reasoning using a structural causal model. Then, we ground interaction regions and expand them into hierarchical visual cues, augmented with corresponding captions, to form the initial observations. To reduce noise in these observations, we employ uncertainty calibration to filter out unreliable information. These refined observations as mediators are then incorporated into the prompt template, guiding the model to understand semantics from a first-person perspective. Extensive experiments conducted on the EgoThink benchmark demonstrate that our FRUIT method consistently enhances the performance of existing LVLMs on six distinct tasks. Our code is available at https://github.com/Mrshenshen/FRUIT.
2024
Calibrating the Confidence of Large Language Models by Eliciting Fidelity
Mozhi Zhang
|
Mianqiu Huang
|
Rundong Shi
|
Linsen Guo
|
Chong Peng
|
Peng Yan
|
Yaqian Zhou
|
Xipeng Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless. However, post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate. In this paper, we decompose the language model confidence into the Uncertainty about the question and the Fidelity to the answer generated by language models. Then, we propose a plug-and-play method, UF Calibration, to estimate the confidence of language models. Our method has shown good calibration performance by conducting experiments with 6 RLHF-LMs on four MCQA datasets. Moreover, we propose two novel metrics, IPR and CE, to evaluate the calibration of the model, and we have conducted a detailed discussion on Truly Well-Calibrated Confidence for large language models. Our method could serve as a strong baseline, and we hope that this work will provide some insights into the model confidence calibration.
Search
Fix author
Co-authors
- Peng Yan 2
- Linsen Guo 1
- Mianqiu Huang 1
- Shenshen Li 1
- Wenxin Meng 1
- show all...