2025
pdf
bib
abs
RiOT: Efficient Prompt Refinement with Residual Optimization Tree
Chenyi Zhou
|
Zhengyan Shi
|
Yuan Yao
|
Lei Liang
|
Huajun Chen
|
Qiang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in large language models (LLMs) have highlighted their potential across a variety of tasks, but their performance still heavily relies on the design of effective prompts. Existing methods for automatic prompt optimization face two challenges: lack of diversity, limiting the exploration of valuable and innovative directions and semantic drift, where optimizations for one task can degrade performance in others. To address these issues, we propose Residual Optimization Tree (RiOT), a novel framework for automatic prompt optimization. RiOT iteratively refines prompts through text gradients, generating multiple semantically diverse candidates at each step, and selects the best prompt using perplexity. Additionally, RiOT incorporates the text residual connection to mitigate semantic drift by selectively retaining beneficial content across optimization iterations. A tree structure efficiently manages the optimization process, ensuring scalability and flexibility. Extensive experiments across five benchmarks — covering commonsense, mathematical, logical, temporal, and semantic reasoning — demonstrate that RiOT outperforms both previous prompt optimization methods and manual prompting. Code will be released.
pdf
bib
abs
Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering
Songtao Jiang
|
Chenyi Zhou
|
Yan Zhang
|
Yeying Jin
|
Zuozhu Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Multimodal large language models (MLLMs) still struggle with complex reasoning tasks in Visual Question Answering (VQA). While current methods have advanced by incorporating visual prompts, our study uncovers critical limitations: these approaches indiscriminately annotate all detected objects for every visual question, generating excessive visual markers that degrade task performance. This issue stems primarily from a lack of focus on key visual elements, raising two important questions: Are all objects equally important, and do all questions require visual prompts? Motivated by Dual Process Theory, which distinguishes between instinctive and deliberate cognitive modes in human reasoning, we propose FOCUS, a plug-and-play approach that dynamically adapts to the complexity of questions, combining fast intuitive judgments with deliberate analytical reasoning to enhance the vision-language reasoning capability of the MLLM. For straightforward questions, FOCUS supports efficient zero-shot reasoning. For more complex tasks, it employs the conceptualizing before observation strategy to highlight critical elements. Extensive experiments on four benchmarks—ScienceQA, TextQA, VizWiz, and MME—demonstrate that FOCUS consistently improves the performance of both open-source and black-box MLLMs, achieving significant gains across all datasets. Ablation studies further validate the importance of combining diverse cognitive strategies with refined visual information for superior performance. Code will be released.
pdf
bib
abs
MedThink: A Rationale-Guided Framework for Explaining Medical Visual Question Answering
Xiaotang Gai
|
Chenyi Zhou
|
Jiaxiang Liu
|
Yang Feng
|
Jian Wu
|
Zuozhu Liu
Findings of the Association for Computational Linguistics: NAACL 2025
Medical Visual Question Answering (Med-VQA), which offers language responses to image-based medical inquiries, represents a challenging task and significant advancement in healthcare. It assists medical experts to swiftly interpret medical images, thereby enabling faster and more accurate diagnoses. However, the model interpretability and transparency of existing Med-VQA solutions are often limited, posing challenges in understanding their decision-making processes. To address this issue, we devise a semi-automated annotation process to streamline data preparation and build new benchmark Med-VQA datasets R-RAD, R-SLAKE and R-Path. These datasets provide intermediate medical decision-making rationales generated by multimodal large language models and human annotations for question-answering pairs in existing Med-VQA datasets, i.e., VQA-RAD, SLAKE and PathVQA. Moreover, we design a novel framework, MedThink, which finetunes lightweight pretrained generative models by incorporating medical decision-making rationales. MedThink includes three distinct strategies to generate decision outcomes and corresponding rationales, clearly showcasing the medical decision-making process during reasoning. Our comprehensive experiments show that our method achieves an accuracy of 83.5% on R-RAD, 86.3% on R-SLAKE and 87.2% on R-Path. These results significantly exceed those of existing state-of-the-art models with comparable parameters. Datasets and code are available at https://github.com/Tang-xiaoxiao/Medthink.