Chenyang Yan
2025
CapArena: Benchmarking and Analyzing Detailed Image Captioning in the LLM Era
Kanzhi Cheng
|
Wenpo Song
|
Jiaxin Fan
|
Zheng Ma
|
Qiushi Sun
|
Fangzhi Xu
|
Chenyang Yan
|
Nuo Chen
|
Jianbing Zhang
|
Jiajun Chen
Findings of the Association for Computational Linguistics: ACL 2025
Image captioning has been a longstanding challenge in vision-language research. With the rise of LLMs, modern Vision-Language Models (VLMs) generate detailed and comprehensive image descriptions. However, benchmarking the quality of such captions remains unresolved. This paper addresses two key questions: (1) How well do VLMs actually perform on image captioning, particularly compared to humans? We built CapArena, a platform with over 6000 pairwise caption battles and high-quality human preference votes. Our Arena-style evaluation marks a milestone, showing that leading models like GPT-4o achieve or even surpass human performance, while most open-source models lag behind. (2) Can automated metrics reliably assess caption quality? Using human annotations from CapArena, we evaluate traditional and recent captioning metrics, as well as VLM-as-a-Judge. Our analysis reveals that while some metrics (e.g., METEOR) show high caption-level agreement with humans, their systematic biases lead to inconsistencies in model ranking. In contrast, VLM-as-a-Judge demonstrates robust discernment at both the caption and model levels. Building on these insights, we release CapArena-Auto, an accurate and efficient automated benchmark for detailed captioning, achieving 93.4% correlation with human rankings at just $4 per test. All data and evaluation resources have been open-sourced.