Chenxing Li


2025

pdf bib
Enhancing Multimodal Continual Instruction Tuning with BranchLoRA
Duzhen Zhang | Yong Ren | Zhong-Zhi Li | Yahan Yu | Jiahua Dong | Chenxing Li | Zhilong Ji | Jinfeng Bai
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Continual Instruction Tuning (MCIT) aims to finetune Multimodal Large Language Models (MLLMs) to continually align with human intent across sequential tasks. Existing approaches often rely on the Mixture-of-Experts (MoE) LoRA framework to preserve previous instruction alignments. However, these methods are prone to Catastrophic Forgetting (CF), as they aggregate all LoRA blocks via simple summation, which compromises performance over time. In this paper, we identify a critical parameter inefficiency in the MoELoRA framework within the MCIT context. Based on this insight, we propose BranchLoRA, an asymmetric framework to enhance both efficiency and performance. To mitigate CF, we introduce a flexible tuning-freezing mechanism within BranchLoRA, enabling branches to specialize in intra-task knowledge while fostering inter-task collaboration. Moreover, we incrementally incorporate task-specific routers to ensure an optimal branch distribution over time, rather than favoring the most recent task. To streamline inference, we introduce a task selector that automatically routes test inputs to the appropriate router without requiring task identity. Extensive experiments on the latest MCIT benchmark demonstrate that BranchLoRA significantly outperforms MoELoRA and maintains its superiority across various MLLM sizes.

2024

pdf bib
MM-LLMs: Recent Advances in MultiModal Large Language Models
Duzhen Zhang | Yahan Yu | Jiahua Dong | Chenxing Li | Dan Su | Chenhui Chu | Dong Yu
Findings of the Association for Computational Linguistics: ACL 2024

In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Initially, we outline general design formulations for model architecture and training pipeline. Subsequently, we introduce a taxonomy encompassing 126 MM-LLMs, each characterized by its specific formulations. Furthermore, we review the performance of selected MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Finally, we explore promising directions for MM-LLMs while concurrently maintaining a [real-time tracking website](https://mm-llms.github.io/) for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.