Chenhao Ma


2025

pdf bib
SHARE: An SLM-based Hierarchical Action CorREction Assistant for Text-to-SQL
Ge Qu | Jinyang Li | Bowen Qin | Xiaolong Li | Nan Huo | Chenhao Ma | Reynold Cheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current self-correction approaches in text-to-SQL face two critical limitations: 1) Conventional self-correction methods rely on recursive self-calls of LLMs, resulting in multiplicative computational overhead, and 2) LLMs struggle to implement effective error detection and correction for monolithic SQL queries, as they fail to demonstrate the underlying reasoning path. In this work, we propose **SHARE**, a **S**LM-based **H**ierarchical **A**ction cor**RE**ction assistant that enables LLMs to perform more precise error localization and efficient correction. SHARE orchestrates three specialized Small Language Models (SLMs) in a sequential pipeline, where it first transforms monolithic SQL queries into stepwise action trajectories that reveal underlying reasoning, followed by a two-phase granular refinement. We further propose a novel hierarchical self-evolution strategy for data-efficient training. Our experimental results demonstrate that SHARE effectively enhances self-correction capabilities while proving robust across various LLMs. Furthermore, our comprehensive analysis shows that SHARE maintains strong performance even in low-resource training settings, which is particularly valuable for text-to-SQL applications with data privacy constraints.

pdf bib
Micro-Act: Mitigate Knowledge Conflict in Question Answering via Actionable Self-Reasoning
Nan Huo | Jinyang Li | Bowen Qin | Ge Qu | Xiaolong Li | Xiaodong Li | Chenhao Ma | Reynold Cheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) systems commonly suffer from **Knowledge Conflicts**, where retrieved external knowledge contradicts the inherent, parametric knowledge of large language models (LLMs). It adversely affects performance on downstream tasks such as question answering (QA). Existing approaches often attempt to mitigate conflicts by directly comparing two knowledge sources in a side-by-side manner, but this can overwhelm LLMs with extraneous or lengthy contexts, ultimately hindering their ability to identify and mitigate inconsistencies. To address this issue, we propose **Micro-Act** a framework with a hierarchical action space that automatically perceives context complexity and adaptively decomposes each knowledge source into a sequence of fine-grained comparisons. These comparisons are represented as actionable steps, enabling reasoning beyond the superficial context. Through extensive experiments on five benchmark datasets, Micro-Act consistently achieves significant increase in QA accuracy over state-of-the-art baselines across all 5 datasets and 3 conflict types, especially in temporal and semantic types where all baselines fail significantly. More importantly, Micro-Act exhibits robust performance on non-conflict questions simultaneously, highlighting its practical value in real-world RAG applications.

2024

pdf bib
Before Generation, Align it! A Novel and Effective Strategy for Mitigating Hallucinations in Text-to-SQL Generation
Ge Qu | Jinyang Li | Bowen Li | Bowen Qin | Nan Huo | Chenhao Ma | Reynold Cheng
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) driven by In-Context Learning (ICL) have significantly improved the performance of text-to-SQL. Previous methods generally employ a two-stage reasoning framework, namely 1) schema linking and 2) logical synthesis, making the framework not only effective but also interpretable. Despite these advancements, the inherent bad nature of the generalization of LLMs often results in hallucinations, which limits the full potential of LLMs. In this work, we first identify and categorize the common types of hallucinations at each stage in text-to-SQL. We then introduce a novel strategy, Task Alignment (TA), designed to mitigate hallucinations at each stage. TA encourages LLMs to take advantage of experiences from similar tasks rather than starting the tasks from scratch. This can help LLMs reduce the burden of generalization, thereby mitigating hallucinations effectively. We further propose TA-SQL, a text-to-SQL framework based on this strategy. The experimental results and comprehensive analysis demonstrate the effectiveness and robustness of our framework. Specifically, it enhances the performance of the GPT-4 baseline by 21.23% relatively on BIRD dev and it yields significant improvements across six models and four mainstream, complex text-to-SQL benchmarks.