Chao Wu


2025

pdf bib
Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction
Yuting Huang | Chengyuan Liu | Yifeng Feng | Yiquan Wu | Chao Wu | Fei Wu | Kun Kuang
Findings of the Association for Computational Linguistics: ACL 2025

As Large Language Models (LLMs) are widely applied in various domains, the safety of LLMs is increasingly attracting attention to avoid their powerful capabilities being misused. Existing jailbreak methods create a forced instruction-following scenario, or search adversarial prompts with prefix or suffix tokens to achieve a specific representation manually or automatically. However, they suffer from low efficiency and explicit jailbreak patterns, far from the real deployment of mass attacks to LLMs. In this paper, we point out that simply rewriting the original instruction can achieve a jailbreak, and we find that this rewriting approach is learnable and transferable. We propose the **R**ewrite to **J**ailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs by iteratively exploring the weakness of the LLMs and automatically improving the attacking strategy. The jailbreak is more efficient and hard to identify since no additional features are introduced. Extensive experiments and analysis demonstrate the effectiveness of R2J, and we find that the jailbreak is also transferable to multiple datasets and various types of models with only a few queries. We hope our work motivates further investigation of LLM safety. The code can be found at [https://github.com/ythuang02/R2J/.](https://github.com/ythuang02/R2J/)

2024

pdf bib
More Than Catastrophic Forgetting: Integrating General Capabilities For Domain-Specific LLMs
Chengyuan Liu | Yangyang Kang | Shihang Wang | Lizhi Qing | Fubang Zhao | Chao Wu | Changlong Sun | Kun Kuang | Fei Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The performance on general tasks decreases after Large Language Models (LLMs) are fine-tuned on domain-specific tasks, the phenomenon is known as Catastrophic Forgetting (CF). However, this paper presents a further challenge for real application of domain-specific LLMs beyond CF, called General Capabilities Integration (GCI), which necessitates the integration of both the general capabilities and domain knowledge within a single instance. The objective of GCI is not merely to retain previously acquired general capabilities alongside new domain knowledge, but to harmonize and utilize both sets of skills in a cohesive manner to enhance performance on domain-specific tasks. Taking legal domain as an example, we carefully design three groups of training and testing tasks without lacking practicability, and construct the corresponding datasets. To better incorporate general capabilities across domain-specific scenarios, we introduce ALoRA, which utilizes a multi-head attention module upon LoRA, facilitating direct information transfer from preceding tokens to the current one. This enhancement permits the representation to dynamically switch between domain-specific knowledge and general competencies according to the attention. Extensive experiments are conducted on the proposed tasks. The results exhibit the significance of our setting, and the effectiveness of our method.