Chao Peng


2025

pdf bib
SoRFT: Issue Resolving with Subtask-oriented Reinforced Fine-Tuning
Zexiong Ma | Chao Peng | Pengfei Gao | Xiangxin Meng | Yanzhen Zou | Bing Xie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Mainstream issue-resolving frameworks predominantly rely on commercial models, leading to high costs and privacy concerns. Existing training approaches for issue resolving struggle with poor generalization and fail to fully leverage open-source development resources. We propose **S**ubtask-**o**riented **R**einforced **F**ine-**T**uning (**SoRFT**), a novel training approach to enhance the issue resolving capability of LLMs. We decomposes issue resolving into structured subtasks: file localization, function localization, line localization, and code edit generation. SoRFT consists of two training stages: (1) **rejection-sampled supervised fine-tuning**, Chain of Thought (CoT) data is filtered using ground-truth before fine-tuning the LLM, and (2) **rule-based reinforcement learning**, which leverages PPO with ground-truth based rewards. We evaluate the SoRFT-trained model on SWE-Bench Verified and SWE-Bench Lite, achieving state-of-the-art (SOTA) performance among open-source models (e.g., resolve 21.4% issues on SWE-Bench Verified with SoRFT-Qwen-7B). The experimental results demonstrate that SoRFT significantly enhances issue-resolving performance, improves model generalization, and provides a cost-efficient alternative to commercial models.

pdf bib
Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study
Bowen Li | Wenhan Wu | Ziwei Tang | Lin Shi | John Yang | Jinyang Li | Shunyu Yao | Chen Qian | Binyuan Hui | Qicheng Zhang | Zhiyin Yu | He Du | Ping Yang | Dahua Lin | Chao Peng | Kai Chen
Proceedings of the 31st International Conference on Computational Linguistics

Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of coding, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. In this case study, we explore the performance of LLMs across the entire software development lifecycle with DevEval, encompassing stages including software design, environment setup, implementation, acceptance testing, and unit testing. DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.