Idioms condense complex semantics into fixed phrases, and their meaning is often not directly connected to the literal meaning of their constituent words, making idiom comprehension a test of metaphor competence. Metaphor, as a cognitive process in human beings, has not yet found an effective evaluation method to assess the metaphor competence of LLMs (Large Language Models). In this paper, we propose a method to evaluate the metaphor competence of LLMs for the idiom understanding task: the Consistency Rating of Semantic Transparency (CR-ST). This strategy assesses the difficulty of understanding idioms through two dimensions: overall semantic transparency and constituent semantic transparency, aiming to gauge LLMs’ mastery of metaphor competence. Subsequently, we introduce a prompt mechanism-Paraphrase Augmentation Strategy with Self-checking (PASS), based on human language logic, which guides the model to enhance its metaphor competence by explicitly generating idiom paraphrases. We conducted a baseline evaluation of seven LLMs on the CINLID and ChID datasets and analyzed the effectiveness of PASS on different subsets of semantic transparency. The experimental results demonstrate that LLMs can achieve performance comparable to PLMs (Pre-trained Language Models) without additional training, and PASS has a positive effect on the metaphor competence of LLMs.
Natural language has been extensively used for modeling text-attributed graphs with LLMs. Natural language is used to describe the graph for LLMs to understand or serve as component of the graph, e.g., textual attributes for embedding generation. However, natural language is inherently redundant and unstructured, making it unsuitable for modeling high-order neighbors with LLMs. Specifically, (i) graph descriptions become verbose, overwhelming LLMs, and (ii) only relying on attribute embeddings limits LLM’s ability to capture the adequate graph structural information. These limitations make it difficult to model graphs both concisely and adequately using sole natural language with LLMs.Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose Graph-Defined Language for Large Language Model (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates the graph into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand the graph. This corpus represents the subgraph centered around target nodes concisely with only a few tokens during fine-tuning on downstream tasks. By treating the graph as a new language, GDL4LLM enables LLMs to model text-attributed graph adequately and concisely. Extensive experiments on five datasets demonstrate that GDL4LLM outperforms description-based and embedding-based baselines by efficiently modeling different orders of neighbors.
Social networks are rife with noise and misleading information, presenting multifaceted challenges for rumor detection. In this paper, from the perspective of human cognitive subjectivity, we introduce the mining of individual latent intentions and propose a novel multi-task learning framework, the Intent-Aware Rumor Detection Network (IRDNet). IRDNet is designed to discern multi-level rumor semantic features and latent user intentions, addressing the challenges of robustness and key feature mining and alignment that plague existing models. In IRDNet, the multi-level semantic extraction module captures sequential and hierarchical features to generate robust semantic representations. The hierarchical contrastive learning module incorporates two complementary strategies, event-level and intent-level, to establish cognitive anchors that uncover the latent intentions of information disseminators. Event-level contrastive learning employs high-quality data augmentation and adversarial perturbations to enhance model robustness. Intent-level contrastive learning leverages the intent encoder to capture latent intent features and optimize consistency within the same intent while ensuring heterogeneity between different intents to clearly distinguish key features from irrelevant elements. Experimental results demonstrate that IRDNet significantly improves the effectiveness of rumor detection and effectively addresses the challenges present in the field of rumor detection.
In the era of widespread dissemination through social media, the task of rumor detection plays a pivotal role in establishing a trustworthy and reliable information environment. Nonetheless, existing research on rumor detection confronts several challenges: the limited expressive power of text encoding sequences, difficulties in domain knowledge coverage and effective information extraction with knowledge graph-based methods, and insufficient mining of semantic structural information. To address these issues, we propose a Crowd Intelligence and ChatGPT-Assisted Network(CICAN) for rumor classification. Specifically, we present a crowd intelligence-based semantic feature learning module to capture textual content’s sequential and hierarchical features. Then, we design a knowledge-based semantic structural mining module that leverages ChatGPT for knowledge enhancement. Finally, we construct an entity-sentence heterogeneous graph and design Entity-Aware Heterogeneous Attention to effectively integrate diverse structural information meta-paths. Experimental results demonstrate that CICAN achieves performance improvement in rumor detection tasks, validating the effectiveness and rationality of using large language models as auxiliary tools.