Chang Ao
2025
Quantification of Large Language Model Distillation
Sunbowen Lee
|
Junting Zhou
|
Chang Ao
|
Kaige Li
|
Xeron Du
|
Sirui He
|
Haihong Wu
|
Tianci Liu
|
Jiaheng Liu
|
Hamid Alinejad-Rokny
|
Min Yang
|
Yitao Liang
|
Zhoufutu Wen
|
Shiwen Ni
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Model distillation is a fundamental technique in building large language models (LLMs), transferring knowledge from a teacher model to a student model. However, distillation can lead to model homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs’ robustness and safety. The code and data are available at https://github.com/Aegis1863/LLMs-Distillation-Quantification.
2024
E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models
Jinchang Hou
|
Chang Ao
|
Haihong Wu
|
Xiangtao Kong
|
Zhigang Zheng
|
Daijia Tang
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Shiwen Ni
|
Min Yang
Findings of the Association for Computational Linguistics: ACL 2024
The rapid development of Large Language Models (LLMs) has led to their increasing utilization in Chinese K-12 education. Despite the growing integration of LLMs and education, the absence of a dedicated benchmark for evaluating LLMs within this domain presents a pressing concern. Consequently, there is an urgent need for a comprehensive natural language processing benchmark to precisely assess the capabilities of various LLMs in Chinese K-12 education. In response, we introduce E-EVAL, the first comprehensive evaluation benchmark specifically tailored for Chinese K-12 education. E-EVAL comprises 4,351 multiple-choice questions spanning primary, middle, and high school levels, covering a diverse array of subjects. Through meticulous evaluation, we find that Chinese-dominant models often outperform English-dominant ones, with many exceeding GPT 4.0. However, most struggle with complex subjects like mathematics. Additionally, our analysis indicates that most Chinese-dominant LLMs do not achieve higher scores at the primary school level compared to the middle school level, highlighting the nuanced relationship between proficiency in higher-order and lower-order knowledge domains. Furthermore, experimental results highlight the effectiveness of the Chain of Thought (CoT) technique in scientific subjects and Few-shot prompting in liberal arts. Through E-EVAL, we aim to conduct a rigorous analysis delineating the strengths and limitations of LLMs in educational applications, thereby contributing significantly to the advancement of Chinese K-12 education and LLMs.
Search
Fix author
Co-authors
- Shiwen Ni 2
- Haihong Wu 2
- Min Yang 2
- Hamid Alinejad-Rokny 1
- Xeron Du 1
- show all...