Bowen Ping


2025

pdf bib
LongDPO: Unlock Better Long-form Generation Abilities for LLMs via Critique-augmented Stepwise Information
Bowen Ping | Jiali Zeng | Fandong Meng | Shuo Wang | Jie Zhou | Shanghang Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements in large language models (LLMs) have markedly improved their capacity to handle long text inputs; however, current models, including GPT-4o, still exhibit unsatisfactory performance in long-form generation. Generating high-quality long-form content still remains a significant challenge. In this paper, we present LongDPO, a novel approach designed to enhance long-form text generation through step-level supervision. By leveraging Monte Carlo Tree Search (MCTS) to collect stepwise preference pairs and employing a global memory pool to maintain factual accuracy, LongDPO effectively mitigates issues such as inconsistencies that are prevalent in long-context LLMs. Furthermore, we integrate critique-augmented generation to refine the selected preference pairs. Following the collection of stepwise preference pairs, we apply stepwise preference learning for fine-grained optimization. Experimental results demonstrate that our method enhances performance on long-form generation benchmarks (e.g. LongBench-Write) while maintaining nearly lossless performance on several general benchmarks.

2024

pdf bib
LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative Tasks
Hanqing Wang | Bowen Ping | Shuo Wang | Xu Han | Yun Chen | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain, where different learned additional modules represent diverse skills. Combining existing LoRAs to address new tasks can enhance the reusability of learned LoRAs, particularly beneficial for tasks with limited annotated data. Most prior works on LoRA combination primarily rely on task-level weights for each involved LoRA, making different examples and tokens share the same LoRA weights. However, in generative tasks, different tokens may necessitate diverse skills to manage. Taking the Chinese math task as an example, understanding the problem description may depend more on the Chinese LoRA, while the calculation part may rely more on the math LoRA. To this end, we propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs. The weights at each step are determined by a fusion gate with extremely few parameters, which can be learned with only 200 training examples. Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights. This underscores the necessity of introducing dynamic fusion weights for LoRA combination.